# IM 2010: Operations Research, Spring 2014 Nonlinear Programming (Part 2)

#### Ling-Chieh Kung

Department of Information Management National Taiwan University

April 24, 2014

#### Road map

- ► Multi-variate convex analysis.
- Solving constrained NLPs.
- ► Applications.

# **Convex analysis**

- ▶ We have learned how to solve single-variate NLPs.
  - An optimal solution either satisfies the **FOC** or is a boundary point.
  - ▶ If the NLP is a **CP**, a feasible point satisfying the FOC is optimal.
- ► The above facts actually apply to **multi-variate NLPs**.
- ▶ We need to be able to determine whether a multi-variate function is convex, concave, or neither.
- ▶ We will still focus on **twice differentiable** functions.
  - Let's extend the notion of derivatives first.

#### **Partial derivatives**

- ▶ For a function  $f : \mathbb{R}^n \to \mathbb{R}$ , its *i*th **partial derivative** is  $\frac{\partial f(x)}{\partial x_i}$ .
  - E.g., the partial derivatives for

$$f(x_1, x_2, x_3) = x_1^2 + x_2 x_3 + x_3^3$$

 $\operatorname{are}$ 

$$\frac{\partial f(x)}{\partial x_1} = 2x_1, \frac{\partial f(x)}{\partial x_2} = x_3 \text{ and } \frac{\partial f(x)}{\partial x_3} = x_2 + 3x_3^2.$$

- ► It also has second-order partial derivatives:
  - For the same f, we have

$$\frac{\partial^2 f(x)}{\partial x_1^2} = 2, \frac{\partial^2 f(x)}{\partial x_2^2} = 0, \frac{\partial^2 f(x)}{\partial x_3^2} = 6x_3,$$
$$\frac{\partial^2 f(x)}{\partial x_1 x_2} = \frac{\partial^2 f(x)}{\partial x_2 x_1} = 0, \frac{\partial^2 f(x)}{\partial x_1 x_3} = \frac{\partial^2 f(x)}{\partial x_3 x_1} = 0, \frac{\partial^2 f(x)}{\partial x_2 x_3} = \frac{\partial^2 f(x)}{\partial x_3 x_2} = 1.$$

#### Symmetry of second-order derivatives

▶ For a second-order derivatives, we have the following fact:

#### Proposition 1

For a twice differentiable function  $f : \mathbb{R}^n \to \mathbb{R}$ , if its second-order derivatives are all continuous, then

$$\frac{\partial^2 f(x)}{\partial x_i x_j} = \frac{\partial^2 f(x)}{\partial x_j x_i}$$

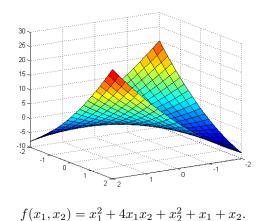
for all i = 1, ..., n, j = 1, ..., n.

▶ For all functions we will see in this course, the above property holds.

#### Multi-variate convex functions

- For  $f : \mathbb{R} \to \mathbb{R}$ , f is convex if and only if  $f''(x) \ge 0$  for all x.
- ▶ For  $f : \mathbb{R}^n \to \mathbb{R}$ , is it true that f is convex if and only if  $\frac{\partial^2 f(x)}{\partial x_i^2} \ge 0$  for all  $x_i, i = 1, ..., n$ ?
- ▶ Consider f(x<sub>1</sub>, x<sub>2</sub>) = x<sub>1</sub><sup>2</sup> + 4x<sub>1</sub>x<sub>2</sub> + x<sub>2</sub><sup>2</sup> + x<sub>1</sub> + x<sub>2</sub>. Is it convex at (0,0)?
   ▶ We have

$$\frac{\partial f(0,0)}{\partial x_1} = (2x_1 + 4x_2 + 1) \Big|_{(x_1,x_2) = (0,0)} = 1 \quad \text{and} \quad \frac{\partial^2 f(0,0)}{\partial x_1^2} = 2 > 0.$$


 $\blacktriangleright$  We also have

$$\frac{\partial f(0,0)}{\partial x_2} = (2x_2 + 4x_1 + 1) \Big|_{(x_1,x_2) = (0,0)} = 1 \quad \text{and} \quad \frac{\partial^2 f(0,0)}{\partial x_1^2} = 2 > 0$$

• Is f convex at (0,0)?

# Multi-variate convex functions

- This is necessary but insufficient!
- ▶  $\frac{\partial^2}{\partial x_1^2} f(0,0) \ge 0$  and  $\frac{\partial^2}{\partial x_2^2} f(0,0) \ge 0$  only imply that f is convex along the two axes!
  - Along (1, -1), e.g., f is not convex.
- We need to test whether f is convex in all directions.



# Gradients and Hessians

▶ For a function  $f : \mathbb{R}^n \to \mathbb{R}$ , collecting its first- and second-order partial derivatives generates its gradient and Hessian:

Definition 1 (Gradients and Hessians)

For a multi-variate twice differentiable function  $f : \mathbb{R}^n \to \mathbb{R}$ , its gradient and Hessian are

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix} \quad and \quad \nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \ddots & \vdots \\ \vdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}.$$

▶ In this course, all Hessians are **symmetric**.

•

## Example

• For  $f(x_1, x_2, x_3) = x_1^2 + x_2 x_3 + x_3^3$ , the gradient is

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \frac{\partial f(x)}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ x_3 \\ x_2 + 3x_3^2 \end{bmatrix}$$

▶ The Hessian is

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_3} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \frac{\partial^2 f(x)}{\partial x_2 \partial x_3} \\ \frac{\partial^2 f(x)}{\partial x_3 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_3 \partial x_2} & \frac{\partial^2 f(x)}{\partial x_3^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 6x_3 \end{bmatrix}.$$

• What are  $\forall f(3,2,1)$  and  $\forall^2 f(3,2,1)$ ?

# Convexity of twice differentiable functions

▶ Recall the following theorem for single-variate functions:

Proposition 2

For a single-variate twice differentiable function f(x):

- f is convex in [a, b] if  $f''(x) \ge 0$  for all  $x \in [a, b]$ .
- $\bar{x}$  is an interior local min only if  $f'(\bar{x}) = 0$ .
- If f is convex,  $x^*$  is a global min if and only if  $f'(x^*) = 0$ .

▶ We have an analogous theorem for multi-variate functions:

Proposition 3

For a multi-variate twice differentiable function f(x):

- f is convex in F if  $\nabla^2 f(x)$  is positive semi-definite for all  $x \in F$ .
- $\bar{x}$  is an interior local min only if  $\nabla f(x) = 0$ .
- If f is convex,  $x^*$  is a global min if and only if  $\nabla f(x^*) = 0$ .

▶ What is **positive semi-definiteness** (PSD)?

# Positive semi-definite matrices

▶ Positive semi-definite Hessians in ℝ<sup>n</sup> are generalizations of nonnegative second-order derivatives in ℝ.

Definition 2 (Positive semi-definite matrices)

A symmetric matrix A is positive semi-definite if  $x^T A x \ge 0$  for all  $x \in \mathbb{R}^n$ .

• Example 1: For 
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
, we have

$$x^{T}Ax = 2x_{1}^{2} + 2x_{1}x_{2} + 2x_{2}^{2} = (x_{1} + x_{2})^{2} + x_{1}^{2} + x_{2}^{2} \ge 0 \quad \forall x \in \mathbb{R}^{2}.$$

• Example 2: For  $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ , we have  $x^T A x = x_1^2 + 4x_1 x_2 + x_2^2$ , which is negative when  $x_1 = 1$  and  $x_2 = -1$ .

# Positive semi-definite matrices

▶ Given a function f, when is its Hessian  $\nabla^2 f$  PSD?

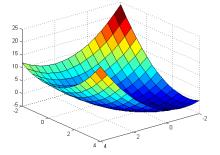
Proposition 4

For a symmetric matrix A, the following statements are equivalent:

- ► A is positive semi-definite.
- ► A's eigenvalues are all nonnegative.
- ► A's leading principal minors are all nonnegative.
- A's eigenvalues  $\lambda$  and eigenvectors x satisfy  $Ax = \lambda x$ .
- A's kth leading principal minors is the determinant of the upper-left k by k submatrix.
- Given a function f, we will:
  - ▶ Find its Hessian.
  - ▶ Find its eigenvalues or leading principal minors.
  - Determine over what region the Hessian is PSD.
  - Over that region, the function is convex.

# An example

Consider the NLP


$$\min_{x \in \mathbb{R}^2} f(x_1, x_2),$$

where

$$f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 - 2x_1 - 4x_2.$$

▶ Its gradient and Hessian are

$$abla f(x_1, x_2) = \begin{bmatrix} 2x_1 + x_2 - 2\\ x_1 + 2x_2 - 4 \end{bmatrix} \text{ and } 
abla^2 f(x_1, x_2) = \begin{bmatrix} 2 & 1\\ 1 & 2 \end{bmatrix}$$



### An example

$$f(x_1, x_2) = x_1^2 + x_2^2 + x_1 x_2 - 2x_1 - 4x_2.$$

▶ To find the eigenvalues of  $\nabla^2 f(x_1, x_2)$ , recall that

$$Ax = \lambda x \quad \Leftrightarrow \quad (A - \lambda I)x = 0 \quad \Leftrightarrow \quad \det(A - \lambda I) = 0.$$

• For our  $\nabla^2 f(x_1, x_2)$ , we have

$$\begin{vmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{vmatrix} = 0 \quad \Leftrightarrow \quad 3-4\lambda+\lambda^2 = 0 \quad \Leftrightarrow \quad \lambda = 1 \text{ or } 3.$$

• Or by leading principal minors:

$$2 \mid = 2$$
 and  $\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3.$ 

► So  $\nabla^2 f(x_1, x_2)$  is PSD and thus  $\min_{x \in \mathbb{R}^2} f(x_1, x_2)$  is a CP. The FOC requires  $2x_1^* + x_2^* - 2 = 0$  and  $x_1^* + 2x_2^* - 4 = 0$ , i.e.,  $(x_1^*, x_2^*) = (0, 2)$ .

# Another example

- Consider  $f(x_1, x_2) = x_1^3 + 4x_1x_2 + x_2^2 + x_1 + x_2$ . When is it convex?
- ▶ Its Hessian is

$$\left[\begin{array}{rrr} 6x_1 & 4\\ 4 & 1 \end{array}\right].$$

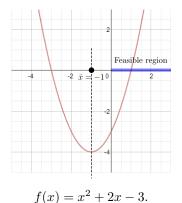
- ▶ When is the Hessian positive semi-definite?
  - We need the first leading principal minor  $6x_1 \ge 0$ .
  - We need the second leading principal minor  $6x_1 16 \ge 0$ .
- Therefore, the function is convex if and only if  $x_1 \ge \frac{8}{3}$ .

#### Road map

- ▶ Multi-variate convex analysis.
- Solving constrained NLPs.
- ► Applications.

# Solving constrained NLPs

- ► For **unconstrained NLPs**, we have enough tools:
  - ▶ We may determine whether the objective function is convex.
  - We may use the FOC to find all local minima.
- ▶ How about **constrained NLPs**?
- We may always try the following strategy:
  - ▶ Ignore all the constraints.
  - ▶ Find a global minimum.
  - ▶ If it is feasible, it is optimal.
- ▶ It an unconstrained global minimum is infeasible, what should we do?

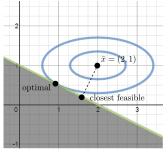

#### Solving single-variate constrained NLPs

► Let's solve

$$\min_{x \ge 0} f(x) = x^2 + 2x - 3.$$

• We have 
$$f'(x) = 2x + 2$$
 and  $f''(x) = 2$ .

- ▶ f is convex and the solution satisfying the FOC is  $\bar{x} = -1$ . However, it is infeasible!
- ▶ For a single-variate NLP, the feasible solution that is **closest** to the FOC-solution is optimal.




## Solving multi-variate constrained NLPs

► Let's solve

$$\min_{x \in \mathbb{R}^2} \quad f(x) = (x_1 - 2)^2 + 4(x_2 - 1)^2$$
  
s.t.  $x_1 + 2x_2 \le 2$ .

- For this CP, the FOC-solution  $\bar{x} = (2, 1)$  is infeasible.
- ► The closest feasible point is **not** optimal!
- We need a way to deal with constraints.



$$f(x) = x^2 + 2x - 3.$$

#### **Relaxation with rewards**

- ▶ Recall our strategy: First ignore all constraints, and then ...
- ▶ Ignoring all constraints is "too much"!
  - An infeasible solution should be bad.
  - But this cannot be revealed in the relaxed NLP.
  - ▶ While we allow one to violate constraints, we **encourage** feasibility.
- Consider an original NLP

$$\max_{x \in \mathbb{R}^n} \quad f(x)$$
  
s.t.  $g_i(x) \le b_i \quad \forall i = 1, ..., m.$ 

▶ How to allow one to violate constraints but encourage feasibility?

- For constraint *i*, let's associate a unit **reward**  $\lambda_i \ge 0$  to it.
- ▶ If a solution  $\bar{x}$  satisfies constraint i (so  $b_i g_i(\bar{x}) \ge 0$ ), "reward" the solution by  $\lambda_i[b_i g_i(\bar{x})]$ . Let's add this into the relaxed NLP.

## Lagrangian relaxation

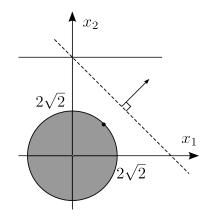
▶ For an original NLP

$$z^* = \max_{x \in \mathbb{R}^n} \left\{ f(x) \middle| g_i(x) \le b_i \; \forall i = 1, ..., m \right\},\tag{1}$$

we relax the constraints and add **rewards for feasibility** into the objective function:

$$z^{L}(\lambda) = \max_{x \in \mathbb{R}^{n}} f(x) + \sum_{i=1}^{m} \lambda_{i} \Big[ b_{i} - g_{i}(x) \Big].$$

$$(2)$$


- Let's assume that  $\lambda_i$ s are given for a while.
- ► To help solve the NLP, we should have  $\lambda_i \ge 0$ . This rewards feasibility and penalize infeasibility.
- $\mathcal{L}(x|\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i [b_i g_i(x)]$  is the **Lagrangian** given  $\lambda$ .
- $\lambda_i$ s are the Lagrange multipliers.

# An example

▶ Consider the following example

$$z^* = \max \quad x_1 + x_2$$
  
s.t.  $x_1^2 + x_2^2 \le 8$   
 $x_2 \le 6.$ 

- ► For this original NLP, the optimal solution is  $x^* = (2, 2)$ .  $z^* = 4$ .
- ▶ What are the Lagrangian and Lagrangian relaxation?



Applications 0000000

# An example

• The original NLP is 
$$z^* = \max_{x \in \mathbb{R}^2} \left\{ x_1 + x_2 \middle| x_1^2 + x_2^2 \le 8, x_2 \le 6 \right\}.$$

▶ Given Lagrange multipliers  $\lambda = (\lambda_1, \lambda_2) \ge 0$ , the Lagrangian is

$$\mathcal{L}(x|\lambda) = x_1 + x_2 + \lambda_1(8 - x_1^2 - x_2^2) + \lambda_2(6 - x_2).$$

▶ The Lagrangian relaxation is

$$z^{L}(\lambda) = \max_{x \in \mathbb{R}^{2}} \mathcal{L}(x|\lambda).$$

▶ Some Lagrange multipliers:

$$z^{L}(0,1) = \max_{x \in \mathbb{R}^{2}} x_{1} + 6 = \infty.$$

$$z^{L}(1,2) = \max_{x \in \mathbb{R}^{2}} -x_{1}^{2} + x_{1} - x_{2}^{2} - x_{2} + 20 = 20.5.$$

$$z^{L}(1,0) = \max_{x \in \mathbb{R}^{2}} -x_{1}^{2} + x_{1} - x_{2}^{2} - x_{2} + 8 = 8.5.$$

• All the  $z^{L}(\lambda)$  above is greater than  $z^{*} = 4!$  Will this always be true?

## Lagrangian relaxation provides a bound

▶ The Lagrangian relaxation provides a **bound** for the original NLP.

Proposition 5

For the two NLPs defined in (1) and (2),  $z^{L}(\lambda) \geq z^{*}$  for all  $\lambda \geq 0$ .

*Proof.* We have

$$z^* = \max_{x \in \mathbb{R}^n} \left\{ f(x) \middle| g_i(x) \le b_i \; \forall i = 1, ..., m \right\}$$
  
$$\leq \max_{x \in \mathbb{R}^n} \left\{ f(x) + \sum_{i=1}^m \lambda_i [b_i - g_i(x)] \middle| g_i(x) \le b_i \; \forall i = 1, ..., m \right\}$$
  
$$\leq \max_{x \in \mathbb{R}^n} \left\{ f(x) + \sum_{i=1}^m \lambda_i [b_i - g_i(x)] \right\} = z^L(\lambda),$$

where the first inequality relies on  $\lambda \geq 0$ .

Nonlinear Programming (Part 2)

# Lagrangian duality

- ▶ Given a constrained original NLP, solving its Lagrangian relaxation gives us some information.
- ▶ A similar situation happened to LP!
  - Any feasible dual solution gives a bound to the primal LP.
  - ▶ We look for an dual optimal solution that gives a tight bound.
- Given that  $z^{L}(\lambda) \geq z^{*}$  for all  $\lambda \geq 0$ , it is natural to define

$$\min_{\lambda \ge 0} \ z^L(\lambda)$$

as the Lagrangian dual program.

- ► Lagrange multipliers are **dual variables** in NLP.
- ▶ LP duality is a special case of Lagrangian duality: The Lagrangian relaxation of an LP is the dual LP.
- ▶ Lagrangian duality possesses several properties (beyond the scope).
  - Just intuitively treat  $\lambda_i$  as the dual variable for constraint *i*.

# The KKT condition

▶ Now we present the most useful optimality condition for general NLPs:

```
Proposition 6 (KKT condition)
```

```
For a "regular" NLP
```

$$\max_{x \in \mathbb{R}^n} \quad f(x)$$
  
s.t.  $g_i(x) \le b_i \quad \forall i = 1, ..., m$ 

if  $\bar{x}$  is a local max, then there exists  $\lambda \in \mathbb{R}^m$  such that

• 
$$g_i(\bar{x}) \leq b_i$$
 for all  $i = 1, ..., m$ ,  
•  $\lambda \geq 0$  and  $\nabla f(\bar{x}) = \sum_{i=1}^m \lambda_i \nabla g_i(\bar{x})$ , and  
•  $\lambda_i [b_i - g_i(\bar{x})] = 0$  for all  $i = 1, ..., m$ .

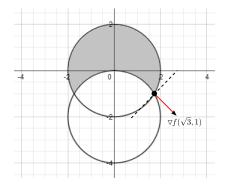
- ▶ All NLPs in this course (and most in the world) are "regular".
- ▶ The condition is necessary for general NLPs but also sufficient for CPs.

# The KKT condition

- ▶ There are three conditions for  $\bar{x}$  to be a local maximum.
- ▶ **Primal feasibility**:  $g_i(\bar{x}) \leq b_i$  for all i = 1, ..., m.
  - It must be feasible.
- ▶ **Dual feasibility**:  $\lambda \ge 0$  and  $\nabla f(\bar{x}) = \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x})$ .
  - The equality is the **FOC** for the Lagrangian  $\mathcal{L}(\bar{x}|\lambda)$ :

$$\nabla\left\{f(x) + \sum_{i=1}^{m} \lambda_i [b_i - g_i(x)]\right\} = 0 \quad \Leftrightarrow \quad \nabla f(\bar{x}) - \sum_{i=1}^{m} \lambda_i \nabla g_i(\bar{x}) = 0.$$

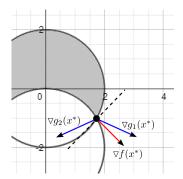
► Complementary slackness:  $\lambda_i[b_i - g_i(\bar{x})] = 0$  for all i = 1, ..., m.


- Dual variable  $\times$  primal slack = 0.
- ▶ If a constraint is **nonbinding**, the Lagrange multiplier is 0.
- ▶ Let's visualize the KKT condition.

# Visualizing the KKT condition

► Consider

$$\begin{array}{ll} \max & x_1 - x_2 \\ \text{s.t.} & x_1^2 + x_2^2 \le 4 \\ & -x_1^2 - (x_2 + 2)^2 \le -4. \end{array}$$


- Graphically,  $x^* = (\sqrt{3}, 1)$  is optimal.
- What happens to  $\nabla f$ ,  $\nabla g_1$ , and  $\nabla g_2$  at  $x^*$ ?



### Visualizing the KKT condition

$$\max f(x) = x_1 - x_2$$
  
s.t.  $g_1(x) = x_1^2 + x_2^2 \le 4$   
 $g_2(x) = -x_1^2 - (x_2 + 2)^2 \le -4.$   
> We have  $\nabla f(x) = (1, -1),$   
 $\nabla g_1(x) = (2x_1, 2x_2),$  and  
 $\nabla g_2(x) = (-2x_1, -2(x_2 + 2)),$   
> Therefore,  $\nabla f(x^*) = (1, -1),$   
 $\nabla g_1(x) = (2x_1 - 2x_2 - 2),$  and

 $\nabla g_1(x^*) = (2\sqrt{3}, -2), \text{ and }$  $\nabla g_2(x^*) = (-2\sqrt{3}, -2).$ 



- ► The existence of  $\lambda \ge 0$  such that  $\nabla f(x^*) = \lambda_1 \nabla g_1(x^*) + \lambda_2 \nabla g_2(x^*)$  simply means that  $\nabla f$  is "in between"  $\nabla g_1$  and  $\nabla g_2$  at  $x^*$ .
  - Otherwise there is a feasible improving direction.
  - ► Complementary slackness  $\lambda_i[b_i g_i(x^*)]$  says that only constraints binding at  $x^*$  matter.

# Applying the KKT condition

$$\max f(x) = x_1 - x_2 \text{s.t.} g_1(x) = x_1^2 + x_2^2 \le 4 g_2(x) = -x_1^2 - (x_2 + 2)^2 \le -4.$$

The Lagrangian is

$$\mathcal{L}(x|\lambda) = x_1 - x_2 + \lambda_1(4 - x_1^2 - x_2^2) + \lambda_2(-4 + x_1^2 + (x_2 + 2)^2).$$

 <sup>∂L(x|λ)</sup>/<sub>∂x1</sub> = 1 - 2(λ<sub>1</sub> - λ<sub>2</sub>)x<sub>1</sub> and <sup>∂L(x|λ)</sup>/<sub>∂x2</sub> = -1 - 2(λ<sub>1</sub> - λ<sub>2</sub>)x<sub>2</sub> + 4λ<sub>2</sub>.

 A solution x̄ is a local maximum only if there exists λ such that

$$\begin{aligned} x_1^2 + x_2^2 &\leq 4, -x_1^2 - (x_2 + 2)^2 \leq -4\\ \lambda_1 &\geq 0, \lambda_2 \geq 0\\ 1 - 2(\lambda_1 - \lambda_2)x_1 &= 0, -1 - 2(\lambda_1 - \lambda_2)x_2 + 4\lambda_2 = 0\\ \lambda_1(4 - x_1^2 - x_2^2) &= 0, \lambda_2(-4 + x_1^2 + (x_2 + 2)^2) = 0. \end{aligned}$$

Nonlinear Programming (Part 2)

#### The KKT condition for analysis

- In general, if there are n variables and m constraints.
  - There are n primal variables (x) and m dual variables  $(\lambda)$ .
  - There are n equalities for dual feasibility.
  - There are m equalities for complementary slackness.
- ▶ As those equalities are nonlinear, there may be multiple solutions satisfying those equalities.
  - ▶ Those inequalities are then used to eliminate some solutions.
- ▶ If we have all local maxima, we compare them for a global maximum.
  - ▶ Nonlinear equations are hard to solve (even numerically).
  - Too time consuming in general.
- Nevertheless, we will see that the KKT condition is useful for analyzing many problems in business and economics.

#### Road map

- ▶ Multi-variate convex analysis.
- Solving constrained NLPs.
- ► Applications.

# Multi-product EOQ problem

Recall that we have solved the EOQ problem

$$\min_{q\geq 0} \ \frac{hq}{2} + \frac{KD}{q},$$

where h is the unit holding cost per year, K is the ordering cost per order, and D is the annual demand. The EOQ is  $q^* = \sqrt{\frac{2KD}{h}}$ .

▶ What if we procure two products? We solve

$$\min_{q_1 \ge 0, q_2 \ge 0} \ \frac{h_1 q_1}{2} + \frac{K_1 D_1}{q_1} + \frac{h_2 q_2}{2} + \frac{K_2 D_2}{q_2}$$

The problem is separable; the optimal quantities are the two EOQs.

# Multi-product EOQ problem

- ▶ What if we have only a limited space for these two products?
- ► We solve

$$\min_{\substack{q_1 \ge 0, q_2 \ge 0 \\ \text{s.t.}}} \quad \frac{h_1 q_1}{2} + \frac{K_1 D_1}{q_1} + \frac{h_2 q_2}{2} + \frac{K_2 D_2}{q_2}$$
s.t.  $v_1 q_1 + v_2 q_2 \le W,$ 

where W is the total space and  $v_i$  is the volume of product i.

- ► Assumptions:
  - ▶ We assume that products can be "in any shape".
  - ▶ This constraint can also be modeling budgets or something else.
  - ▶ We do not try to "synchronize" the procurement processes (so we assume the orders for the two products may arrive at the same time).
- How to solve this problem?
- To simplify the derivation, assume that  $v_1 = v_2 = 1$  and  $h_1 = h_2 = h$ .

# Convexity of the problem

▶ Our (simplified) two-product EOQ problem

$$\min_{\substack{q_1 \ge 0, q_2 \ge 0 \\ \text{s.t.}}} \frac{hq_1}{2} + \frac{K_1 D_1}{q_1} + \frac{hq_2}{2} + \frac{K_2 D_2}{q_2}$$
  
s.t.  $q_1 + q_2 \le W$ ,

is a CP:

▶ The objective function is convex; the Hessian matrix

$$\begin{bmatrix} \frac{K_1 D_1}{q_1^2} & 0\\ 0 & \frac{K_2 D_2}{q_2^2} \end{bmatrix}$$

is positive semi-definite.

- ▶ The feasible region is convex.
- A local minimum is a global minimum.

# The FOC for the Lagrangian

▶ The Lagrangian is

$$\mathcal{L}(q|\lambda) = \frac{hq_1}{2} + \frac{K_1D_1}{q_1} + \frac{hq_2}{2} + \frac{K_2D_2}{q_2} + \lambda(W - q_1 - q_2).$$

▶ The FOC for the Lagrangian is

$$\frac{\partial}{\partial q_1} \mathcal{L}(q|\lambda) = \frac{h}{2} - \frac{K_1 D_1}{q_1^2} - \lambda = 0 \text{ and}$$
$$\frac{\partial}{\partial q_2} \mathcal{L}(q|\lambda) = \frac{h}{2} - \frac{K_2 D_2}{q_2^2} - \lambda = 0.$$

Note that this must be satisfied by **any optimal solution**! • Therefore, we have

$$\frac{K_1D_1}{q_1^2} = \frac{K_2D_2}{q_2^2} \quad \Leftrightarrow \quad \frac{q_1}{q_2} = \sqrt{\frac{K_1D_1}{K_2D_2}}.$$

Nonlinear Programming (Part 2)

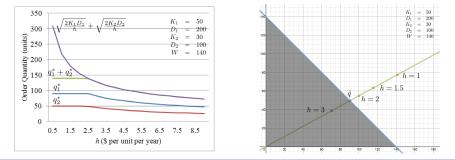
Applications 0000000

#### Solving the multi-product EOQ problem

▶ Now we are ready to solve our two-product EOQ problem

$$\min_{q_1 \ge 0, q_2 \ge 0} \left\{ \frac{hq_1}{2} + \frac{K_1 D_1}{q_1} + \frac{hq_2}{2} + \frac{K_2 D_2}{q_2} \middle| q_1 + q_2 \le W \right\}.$$

- If the unconstrained optimal solution  $(\bar{q}_1, \bar{q}_2) = \left(\sqrt{\frac{2K_1D_1}{h}}, \sqrt{\frac{2K_2D_2}{h}}\right)$  satisfies  $\bar{q}_1 + \bar{q}_2 \leq W$ , it is optimal.
- ▶ Otherwise, the capacity constraint must be binding. The solution to the two equalities


$$q_1 + q_2 = W$$
 and  $\frac{q_1}{q_2} = \sqrt{\frac{K_1 D_1}{K_2 D_2}}$   
is optimal; i.e.,  $(\tilde{q}_1, \tilde{q}_2) = \left(\frac{W}{1 + \sqrt{\frac{K_2 D_2}{K_1 D_1}}}, \frac{W}{1 + \sqrt{\frac{K_1 D_1}{K_2 D_2}}}\right)$  is optimal.

Solving constrained NLPs 0000000000000000 Applications 000000

#### Solving the multi-product EOQ problem

Collectively, the optimal solution is

$$(q_1^*, q_2^*) = \begin{cases} \left(\sqrt{\frac{2K_1D_1}{h}}, \sqrt{\frac{2K_2D_2}{h}}\right) & \text{if } \sqrt{\frac{2K_1D_1}{h}} + \sqrt{\frac{2K_2D_2}{h}} \le \\ \left(\frac{W}{1 + \sqrt{\frac{K_2D_2}{K_1D_1}}}, \frac{W}{1 + \sqrt{\frac{K_1D_1}{K_2D_2}}}\right) & \text{otherwise.} \end{cases}$$



Nonlinear Programming (Part 2)

W