IM 2010: Operations Research, Spring 2014 Game Theory (Part 2): Dynamic Games

Ling-Chieh Kung

Department of Information Management National Taiwan University

May 22, 2014

Road map

- ► Basic ideas.
- Pricing in a supply chain.
- ▶ Indirect newsvendors.

Dynamic BoS

▶ Recall the game "Bach or Stravinsky":

	Bach	Stravinsky
Bach	2,1	0, 0
Stravinsky	0,0	1, 2

- ▶ What if the two players act **sequentially** instead of simultaneously?
 - What will they do in equilibrium?
 - How do their payoffs change?
 - ► Is it better to be the **leader** or the **follower**?

Dynamic BoS

- Suppose player 1 moves first.
- ▶ Instead of a game matrix, the game can now be described by a **game tree**.
 - At each internal node, the label shows who is taking an action.
 - At each link, the label shows an action.
 - At each leaf, the numbers show the payoffs.
- ▶ The games is played from the root to leaves.

Dynamic BoS: Player 2's strategy

- ▶ How should player 1 move?
 - She needs to first predict how player 2 will response.
- ▶ She first treats herself as player 2:
 - ▶ If B has been chosen, choose B.
 - ▶ If S has been chosen, choose S.
- This is exactly player 2's best response to player 1's action.
 - ▶ It is also player 2's optimal strategy.
- ► We use thick lines to mark player 2's optimal strategy.

Dynamic BoS: Player 1's strategy

- ▶ How should player 1 move?
 - ▶ She knows how player 2 reacts.
 - ▶ Based on that, she chooses her action.
- ▶ Player 1 thinks:
 - ▶ If I choose B, I will end up with 2.
 - ▶ If I choose S, I will end up with 1.
- ▶ So player 1 will choose B.
- ▶ We also use a thick line to mark player 1's optimal strategy.
- ► A thick line that connects the root and a leave marks an **equilibrium outcome**.
 - ▶ In equilibrium, they play (B, B).

Dynamic BoS vs. static BoS

- ▶ Regarding predicting their behaviors:
 - ▶ In the static case, we cannot perfectly predict what they will do.
 - ▶ But in the dynamic case, we can!
 - ▶ Their **equilibrium behaviors** change.
- ► Questions:
 - Do the equilibrium behaviors always change when we switch from a static game to a dynamic game?
 - ▶ What if player 2 is the leader and player 1 is the follower?

Dynamic prisoners' dilemma

▶ Recall the game "prisoners' dilemma":

	Denial	Confession
Denial	-1, -1	-9, 0
Confession	0, -9	-6, -6

The equilibrium outcome is (Confession, Confession).

- ▶ What if they move sequentially?
- ▶ In equilibrium, they will **both confess**.
 - ► The outcome **does not change**!
 - Even if they have agreed to both deny, player 1 has denied, and player 2 has observed it, player 2 will still confess.
 - Player 1's promise is useless.

Backward induction

- ▶ In the previous two examples, there are a leader and a follower.
- ▶ Before the leader can make her decision, she anticipates what the follower will do.
- ▶ In general, when there are multiple **stages** in a **dynamic game**, we analyze those decision problems **from the last stage**.
 - ▶ Then the second last stage problem can be solved by having the last stage behavior in mind.
 - The the third last stage problem can be solved.
 - We move **backwards** until the first stage problem is solved.
- ► This solution concept is called **backward induction**.

A three-stage dynamic game

- Consider the three-stage game:
 - ▶ In this game, player 1 has two moves: at stage 1 and at stage 3.
 - ▶ Player 2 has only one move: at stage 2.
- ▶ What will be the equilibrium outcome?

- ▶ When player 2 has the chance to act, will she always choose C?
 - ▶ If player 1 is **rational**, player 2 should never get a chance to act.
 - ▶ If player 2 gets a chance to act, player 1 is somewhat not fully rational.
 - ▶ Therefore, if player 2 chooses D, it is **possible** for player 1 to choose F.
 - ▶ So player 2 should not completely abandon D.
- **Bounded rationality** has been studied in various subjects.
 - We will not touch it in this course.

Leader's advantage

- ▶ In BoS, being the leader (who acts first) is beneficial.
- ▶ In prisoners' dilemma, being the leader or not does not matter.
- ▶ In most chess games, being the leader is advantageous.
- ▶ Is it always good to be the leader?
 - ▶ No; the dynamic matching pennies game is an example.

The ultimatum game

- We conclude this section with the classical ultimatum game.
 - Player 1 decides how to share \$1 with player 2 by offering him \$s.
 - Player 2 may accept or reject the offer.
 - ▶ If he accepts, he earns s and player 1 earns (1 s).
 - ▶ If he rejects, both of them earns \$0.
- ► Suppose both of them are completely rational and want to maximize their payoffs. What will they do?

Basic ideas	Pricing in a supply chain	Indirect newsvendors
0000000000●	000000	000000

The time line representation

▶ In many cases (e.g., when a player has an infinite action space), it is a good idea to use a **time line** to depict the timing of a dynamic game.

- ▶ In equilibrium, player 1 earns \$1 and player 2 earns \$0!
 - In practice, player 1 earns (1ϵ) and player 2 earns ϵ for some $\epsilon > 0$.
 - ► Theoretically, however, only (0, accept) and (0, reject) may be equilibrium outcomes.
- ▶ This applies to many real-world cases:
 - ▶ E.g., wage negotiation between an employer and a employee.
- ▶ How may we modify this game to achieve a half-half allocation?

Road map

- Basic ideas.
- Pricing in a supply chain.
- ▶ Indirect newsvendors.

Pricing in a supply chain

▶ There is a manufacturer and a retailer in a supply chain.

- ▶ The manufacturer produces and supplies to the retailer. The retailer sells to end consumers.
- The manufacturer sets the wholesale price w and then the retailer sets the retail price r.
- ▶ The demand is D(r) = A Br, where A and B are known constants.
- The unit production cost is C, a known constant.
- ▶ What is the equilibrium (i.e., what will the two players do)?
- ▶ To make our lives easier, let's assume A = B = 1 and C = 0.
- Let's apply **backward induction** to solve this game.

The retailer's strategy

▶ For the retailer, the wholesale price is **given**. His trade off:

- Making price lower decreases the profit margin r w.
- Making price higher decreases the sales volume 1 r.
- ▶ The retailer's problem:

$$\max (r - w)(1 - r) = \max -r^2 + (w + 1)r - w.$$

• The optimal solution (best response) is $r^*(w) = \frac{w+1}{2}$.

The manufacturer's strategy

▶ The manufacturer **predicts** the retailer's decision:

- Given her offer w, the retail price will be $r^*(w) = \frac{w+1}{2}$.
- ► More importantly, the **order quantity** will be

$$1 - r^*(w) = 1 - \frac{w+1}{2} = \frac{1-w}{2}.$$

▶ The manufacturer's problem:

$$\max w\left(\frac{1-w}{2}\right) = \max \frac{-w^2+w}{2}.$$

• The optimal solution is $w^* = \frac{1}{2}$.

Equilibrium outcome

• Given that the manufacturer will offer the wholesale price $w^* = \frac{1}{2}$, the resulting retail price will be

$$r^* \equiv r^*(w^*) = \frac{w^* + 1}{2} = \frac{\frac{1}{2} + 1}{2} = \frac{3}{4} > \frac{1}{2} = w^*.$$

- ► A common phenomenon called **double marginalization**.
- The sales volume is $D(r^*) = 1 r^* = \frac{1}{4}$.
- ▶ The retailer earns

$$(r^* - w^*)D(r^*) = \left(\frac{1}{4}\right)\left(\frac{1}{4}\right) = \frac{1}{16}.$$

▶ The manufacturer earns

$$(w^* - C)D(r^*) = \left(\frac{1}{2}\right)\left(\frac{1}{4}\right) = \frac{1}{8}.$$

In total, they earn

$$\frac{1}{16} + \frac{1}{8} = \frac{3}{16}.$$

Pricing in a cooperative supply chain

- ▶ Suppose the two firms **cooperate** and discuss what to do together.
 - ▶ They can decide the wholesale and retail prices together.
 - Can they **do better** than when the supply chain is decentralized?
- Let's set $w^{\text{FB}} = 0$:
 - The retailer's best response is

$$r^{\rm FB} = \frac{1 - w^{\rm FB}}{2} = \frac{1}{2}.$$

- ▶ The sales volume is D(r^{FB}) = 1 ¹/₂ = ¹/₂.
 ▶ The total profit is r^{FB}D(r^{FB}) = ¹/₄.
- This is larger than $\frac{3}{16}$, the total profit generated under decentralization.
- Consumers also benefit from integration.
- ▶ However, the manufacturer earns **nothing**.
 - ▶ How to make the manufacturer accept the proposal?

Road map

- Basic ideas.
- Pricing in a supply chain.
- ► Indirect newsvendors.

Basic ideas 00000000000	Pricing in a supply chain 000000	Indirect newsvendors O●0000

Indirect newsvendor

- ▶ Consumer demands are not always certain.
- Let's assume that the retailer is a price taker and makes **inventory** decisions for **perishable** products.

Decisions:

- The manufacturer chooses the wholesale price w.
- ▶ The retailer, facing uncertain demand $D \sim F, f$ and fixed retail price p, chooses the **order quantity** (inventory level) q.
- Assumption: $D \ge 0$ and is continuous: F' = f.
- ▶ They try to maximize:
 - Retailer: $\pi_{\mathbf{R}}(q) = p\mathbb{E}[\min\{D,q\}] wq.$
 - Manufacturer: $\pi_{\mathrm{M}}(w) = (w c)q^*$, where q^* is optimal to $\max_q \{\pi_{\mathrm{R}}(q)\}$.

Indirect newsvendor with uniform demand

▶ Suppose the demand is uniformly distributed between 0 and 1.

▶ The retailer is facing exactly a newsvendor problem:

- The overage cost is w and the underage cost is p w.
- The retailer-optimal order quantity $q^*(w)$ satisfies

$$1 - F(q^*(w)) = 1 - q^*(w) = \frac{w}{p} \quad \Leftrightarrow \quad q^*(w) = 1 - \frac{w}{p}.$$

Indirect newsvendor with uniform demand

▶ The manufacturer solves

$$\max_{q} (w-c)q^* = (w-c)\left(1-\frac{w}{p}\right).$$

- The equilibrium wholesale price is $w^* = \frac{p+c}{2}$.
- The equilibrium order quantity is $q^* = q^*(\tilde{w}^*) = \frac{p-c}{2p}$.
- ▶ What if they cooperate to maximize the aggregate profit?
 - ▶ The wholesale price simply determines an **internal transfer**.
 - What matters is the inventory level: $q^{\text{FB}} = 1 \frac{c}{p} = \frac{p-c}{c}$.
 - As $q^* = \frac{1}{2}q^{\text{FB}}$, decentralization is **inefficient**.
- ▶ Is it always the case?

Efficient inventory level in general

▶ Suppose the two firms integrate:

• They choose q to maximize $\pi_{\mathcal{C}}(q) = p\mathbb{E}[\min\{D,q\}] - cq$.

Proposition 1

The efficient inventory level q^{FB} satisfies $F(q^{FB}) = 1 - \frac{c}{p}$.

Proof. Because $\pi_{\mathcal{C}}(q) = r\{\int_0^q xf(x)dx + \int_q^\infty qf(x)dx\} - cq$, we have $\pi'_{\mathcal{C}}(q) = r[1 - F(q)] - c$ and $\pi''_{\mathcal{C}}(q) = -rf(q) \leq 0$. Therefore, $\pi_{\mathcal{C}}(q)$ is concave and $\pi'_{\mathcal{C}}(q^{\text{FB}}) = 0$ is the given condition.

Retailer-optimal inventory level

- The retailer maximizes $\pi_{\mathrm{R}}(q) = p\mathbb{E}[\min\{D,q\}] wq$.
- ▶ Let q^* be the retailer-optimal inventory level: $\pi_{\mathbf{R}}(q^*) \ge \pi_{\mathbf{R}}(q)$ for all q.

Proposition 2

We have $q^* < q^{FB}$ if F is strictly increasing.

Proof. Similar to the derivation for q^{FB} , we have $F(q^*) = 1 - \frac{w}{p}$ given any wholesale price w. Note that $F(q^*) = 1 - \frac{w}{p} < 1 - \frac{c}{p} = F(q^{\text{FB}})$ if w > c, which is true in any equilibrium. Therefore, once F is strictly increasing, we have $q^* < q^{\text{FB}}$.

► Decentralization again introduces **inefficiency**.

- ▶ Similar to double marginalization.
- Does it benefit or hurt consumers?
- ► Any solution?