Operations Research Introduction to Linear Programming

Ling-Chieh Kung

Department of Information Management National Taiwan University

A promise is a promise

Swift & Company

- ▶ If you produce foods, what are important in getting an order from restaurants and retailers?
 - ► Customers ask "When may I get them?" and "How much may I get?"
 - You need to give accurate answers immediately.
 - ▶ You need to **promise** and keep your promise.
- ▶ Why difficult?
 - ▶ You have more than 8000 customers sharing your capacity and inventory.
 - Once you promise one customer, you need to immediately update the availability information that are needed elsewhere.
 - ▶ And updating requires a lot of **planning** and calculations.
- ▶ Read the application vignette in Section 3.1 and the article on CEIBA.

Introduction

- ▶ We need a very powerful way of planning.
- ▶ In the next five weeks, we will study **Linear Programming** (LP).
 - ▶ It is used a lot in practice.
 - ▶ It also provides important theoretical properties.
 - ▶ It is good starting point for all OR subjects.
- ► We will study:
 - What kind of practical problems can be solved by LP.
 - How to formulate a problem as an LP.
 - ▶ How to solve an LP.
 - Any many more.
- ▶ Read Chapter 3 for this lecture!
 - ▶ Read Sections 3.1 to 3.3 thoroughly.
 - ▶ Read Section 3.4 for many examples (some may be discussed later).
 - ▶ Skip Sections 3.5 and 3.6.

Road map

Terminology

•000000000

- ► Terminology.
- ► The graphical approach.
- ► Three types of LPs.
- ▶ Simple LP formulations.
- ▶ Compact LP formulations.

0.000000000

- ► Linear Programming is the process of formulating and solving **linear programs** (also abbreviated as LP).
- ▶ An LP is a mathematical program with some special properties.
- ▶ Let's first introduce some concepts of mathematical programs.

▶ In general, any mathematical program can be expressed as

$$\begin{array}{lll} \min & f(x) & (\mbox{objective function}) \\ \text{s.t.} & g_i(x) \leq b_i & \forall i=1,...,m & (\mbox{constraints}) \\ & x_j \in \mathbb{R} & \forall j=1,...,n. & (\mbox{decision variable}) \end{array}$$

 \triangleright There are m constraints and n variables.

- ▶ $f: \mathbb{R}^n \to \mathbb{R}$ and $g_i: \mathbb{R}^n \to \mathbb{R}$ are all real-valued functions.
- ▶ Mostly we will omit $x_j \in \mathbb{R}$.

00000000000

- ▶ How about a maximization objective function?
 - $\qquad \qquad \max f(x) \Leftrightarrow \min -f(x).$
- ▶ How about "=" or ">" constraints?
 - $g_i(x) \ge b_i \Leftrightarrow -g_i(x) \le -b_i.$
 - $g_i(x) = b_i \Leftrightarrow g_i(x) \le b_i$ and $g_i(x) \ge b_i$, i.e., $-g_i(x) \le -b_i$.

Sign constraints

- ▶ For some reasons that will be clear in the next week, we distinguish between two kinds of constraints:
 - ▶ Sign constraints: $x_i \ge 0$ or $x_i \le 0$.
 - ► Functional constraints: all others.
- \triangleright For a variable x_i :
 - ▶ It is **nonnegative** if $x_i \ge 0$.
 - ▶ It is **nonpositive** if $x_i \leq 0$.
 - ▶ It is unrestricted in sign (urs.) or free if it has no sign constraint.

Feasible solutions

- ▶ For a mathematical program:
 - ▶ A **feasible solution** satisfies all the constraints.
 - ▶ An **infeasible solution** violates at least one constraint.

- ► Feasible?
 - $x^1 = (2,3).$
 - $x^2 = (6,0).$
 - $x^3 = (6,6).$

Feasible region and optimal solutions

- ▶ The **feasible region** (or **feasible set**) is the set of feasible solutions.
 - ▶ The feasible region may be empty.
- ▶ An **optimal solution** is a feasible solution that:
 - ▶ Attains the largest objective value for a maximization problem.
 - ▶ Attains the smallest objective value for a minimization problem.
 - ▶ In short, no feasible solution is better than it.
- ▶ An optimal solution may not be unique.
 - ► There may be **multiple** optimal solutions.
 - ► There may be **no** optimal solution.

Binding constraints

► At a solution, a constraint may be binding:¹

Definition 1

Let $g(\cdot) \leq b$ be an inequality constraint and \bar{x} be a solution. $g(\cdot)$ is binding at \bar{x} if $g(\bar{x}) = b$.

- ▶ An inequality is **nonbinding** at a point if it is strict at that point.
- ▶ An equality constraint is always binding at any feasible solution.
- ► Some examples:
 - $x_1 + x_2 \le 10$ is binding at $(x_1, x_2) = (2, 8)$.
 - ▶ $2x_1 + x_2 \ge 6$ is nonbinding at $(x_1, x_2) = (2, 8)$.
 - $x_1 + 3x_2 = 9$ is binding at $(x_1, x_2) = (6, 1).$

¹Binding/nonbinding constraints are also called **active**/inactive constraints.

Strict constraints?

- ► An inequality may be **strict** or **weak**:
 - ▶ It is strict if the two sides cannot be equal. E.g., $x_1 + x_2 > 5$.
 - ▶ It is weak if the two sides may be equal. E.g., $x_1 + x_2 \ge 5$.
- ▶ A "practical" mathematical program's inequalities are all weak.
 - ▶ With strict inequalities, an optimal solution may not be attainable!
 - What is the optimal solution of

$$\begin{array}{ll}
\text{min} & x \\
\text{s.t.} & x > 0?
\end{array}$$

- ▶ Think about budget constraints.
 - ▶ You want to spend \$500 to buy several things.
 - ► Typically, you cannot spend more than \$500.
 - ▶ But you can spend exactly \$500.

Linear Programs

► For a mathematical program

min
$$f(x)$$

s.t. $g_i(x) \le b_i \quad \forall i = 1, ..., m$,

if f and q_i s are all **linear** functions, it is an LP.

▶ In general, an LP can be expressed as

$$\min \quad \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{i=1}^{n} A_{ij} x_j \le b_i \quad \forall i = 1, ..., m.$$

- $ightharpoonup A_{ii}$ s: the constraint coefficients.
- \triangleright b_i s: the right-hand-side values (RHS).
- $ightharpoonup c_i$ s: the objective coefficients.

$$\begin{array}{ll}
\min & c^T x \\
\text{s.t.} & Ax < b.
\end{array}$$

- $A \in \mathbb{R}^{m \times n}$.
- $b \in \mathbb{R}^m$
- $c \in \mathbb{R}^n$
- $x \in \mathbb{R}^n$.

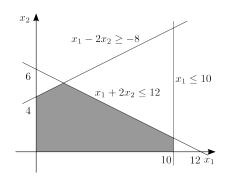
0000000000

- ▶ The decision variables, objective function, and constraints.
- Functional and sign constraints.
- ▶ Feasible solutions and optimal solutions.
- ▶ Binding constraints.

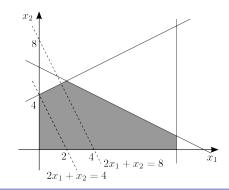
- Terminology.
- ► The graphical approach.
- ► Three types of LPs.
- ▶ Simple LP formulations.
- Compact LP formulations.

- ► For LPs with only two decision variables, we may solve them with the **graphical approach**.
- ▶ Consider the following example:

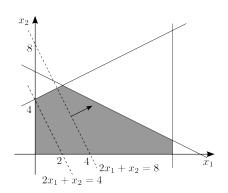
- ▶ Step 1: Draw the feasible region.
 - ▶ Draw each constraint one by one, and then find the intersection.



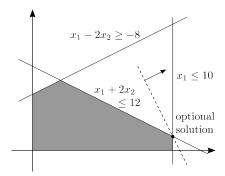
- ► Step 2: Draw some isoquant lines.
 - ▶ A line such that all points on it result in the same objective value.
 - ▶ Also called **isoprofit** or **isocost** lines when it is appropriate.
 - ▶ Also called **indifference lines** (curves) in Economics.



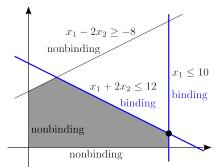
- ▶ Step 3: Indicate the direction to push the isoquant line.
 - ► The direction that **decreases**/increases the objective value for a **minimization**/maximization problem.



- ▶ Step 4: Push the isoquant line to the "end" of the feasible region.
 - ▶ Stop when any further step makes all points on the isocost line infeasible.



Step 5: Identify the binding constraints at the optimal solution.



Terminology

- ▶ Step 6: Set the binding constraints to equalities and then solve the linear system for an optimal solution.
 - ▶ In the example, the binding constraints are $x_1 \le 10$ and $x_1 + 2x_2 \le 12$. Therefore, we solve

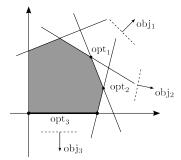
$$\left[\begin{array}{cc|c}1&0&10\\1&2&12\end{array}\right]\rightarrow\left[\begin{array}{cc|c}1&0&10\\0&2&2\end{array}\right]\rightarrow\left[\begin{array}{cc|c}1&0&10\\0&1&1\end{array}\right]$$

and obtain an optimal solution $(x_1^*, x_2^*) = (10, 1)$.

- ▶ Step 7: Plug in the optimal solution obtained into the objective function to get the associated objective value.
 - In the example, $2x_1^* + x_2^* = 21$.

Where to stop pushing?

- ▶ Where we push the isoquant line, where will be stop at?
- Intuitively, we always stop at a "corner" (or an edge).



- ▶ Is this intuition still true for LPs with more than two variables?
- ▶ Yes! With a more rigorous definition of "corners".

▶ We need to first define **extreme points** for a set:²

Definition 2 (Extreme points)

For a set $S \subseteq \mathbb{R}^n$, a point x is an extreme point if there does not exist a three-tuple (x^1, x^2, λ) such that $x^1 \in S \setminus \{x\}$, $x^2 \in S \setminus \{x\}$, $\lambda \in (0, 1)$, and

$$x = \lambda x^1 + (1 - \lambda)x^2.$$

²In the textbook, extreme points are called corner-point solutions.

Optimality of extreme points

▶ For any LP, we have the following fact.

Proposition 1

For any LP, if there is an optimal solution, there is an extreme point optimal solution.

- ▶ It is not saying that "if a solution is optimal, it is an extreme point!"
- ▶ This property will be very useful when we develop a method for solving general LPs!

Graphical approach: Summary

- ► Six steps:
 - ▶ Step 1: Feasible region.
 - ► Step 2: Isoquant line.
 - ▶ Step 3: Direction to push (i.e., the improving direction).
 - ► Step 4: Push!
 - ▶ Step 5: Binding constraints at an optimal solution.
 - ▶ Step 6: An optimal solution and the associated objective value.
- ▶ Make your graph clear and in the right scale to avoid mistakes.

Road map

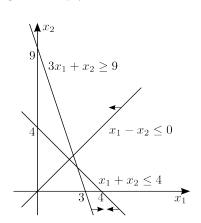
Terminology

- Terminology.
- ▶ The graphical approach.
- ► Three types of LPs.
- ► Simple LP formulations.
- ▶ Compact LP formulations.

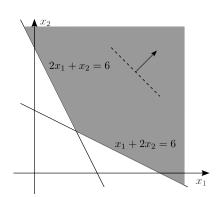
Three types of LPs

- ▶ For any LPs, it must be one of the following:
 - ► Infeasible.
 - Unbounded.
 - ▶ Finitely optimal (having an optimal solution).
- ▶ A finitely optimal LP may have:
 - ▶ A unique optimal solution.
 - Multiple optimal solutions.

► An LP is **infeasible** if its feasible region is empty.

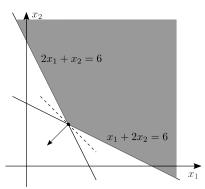


▶ An LP is **unbounded** if for any feasible solution, there is another feasible solution that is better.



Unboundedness

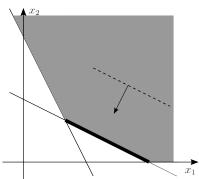
- ▶ Note that an unbounded feasible region does not imply an unbounded LP!
 - ► Is it necessary?



▶ If an LP is neither infeasible nor unbounded, it is **finitely optimal**.

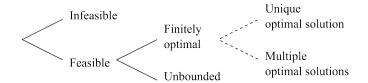
Multiple optimal solutions

▶ A linear program may have **multiple** optimal solutions.



▶ If the slope of the isoquant line is identical to that of one constraint, will we always have multiple optimal solutions?

Summary



- ▶ In solving an LP (or any mathematical program) in practice, we only want to find **an** optimal solution, not all.
 - ▶ All we want is to make an optimal decision.

- ► Terminology.
- ► The graphical approach.
- ► Three types of LPs.
- ► Simple LP formulations.
- ▶ Compact LP formulations.

Introduction

- ▶ It is important to learn how to model a practical situation as an LP.
 - ▶ Once you do so, you have "solved" the problem.
- ► This process is typically called **LP formulation** or **modeling**.
- ▶ Here we will give you two examples of LP formulation.
 - ► We will do more in lectures, TA sessions, homework, case assignments, exams, and (most likely) the final project.
 - ► Practice makes perfect!
- ▶ Then we formulate large-scale problems with **compact formulations**.

- ▶ We produce several products to sell.
- ► Each product requires some resources. Resources are limited.
- ▶ We want to maximize the total sales revenue with available resources.

Problem description

- ▶ We produce desks and tables.
 - Producing a desk requires three units of wood, one hour of labor, and 50 minutes of machine time.
 - Producing a table requires five units of wood, two hours of labor, and 20 minutes of machine time.
- ▶ We may sell everything we produce.
- ▶ For each day, we have
 - ▶ Two hundred workers that each works for eight hours.
 - ▶ Fifty machines that each runs for sixteen hours.
 - ► A supply of 3600 units of wood.
- ▶ Desks and tables are sold at \$700 and \$900 per unit, respectively.

DFSI: (1) Define variables

- ▶ What do we need to decide?
- ► Let

 x_1 = number of desks produced in a day and x_2 = number of tables produced in a day.

▶ With these variables, we now try to **express** how much we will earn and how many resources we will consume.

DFSI: (2a) Formulate the objective function

- ▶ We want to maximize the total sales revenue.
- ▶ Given our variables x_1 and x_2 , the sales revenue is $700x_1 + 900x_2$.
- ▶ The objective function is thus

 $\max 700x_1 + 900x_2.$

DFSI: (2b) Formulate constraints

- ▶ For each **restriction** or **limitation**, we write a constraint.
- ► Summarizing data into a table typically helps:

Resource	Consump	ption per	Total supply		
	Desk	Table	Total supply		
Wood	3 units	5 units	3600 units		
Labor hour	1 hour	2 hours	$200 \text{ workers} \times 8 \text{ hr/worker}$ = 1600 hours		
Machine time	50 minutes	20 minutes	50 machines × 16 hr/machine = 800 hours		

- ▶ The supply of wood is limited: $3x_1 + 5x_2 \le 3600$.
- ▶ The number of labor hours is limited: $x_1 + 2x_2 \le 1600$.
- ▶ The amount of machine time is limited: $50x_1 + 20x_2 \le 48000$.
 - ▶ Use the same unit of measurement!

DFSI: (2c) Complete formulation

Collectively, our formulation is

is that all?³

- ► In any case:
 - ► Clearly define decision variables in front of your formulation.
 - ▶ Write **comments** after the objective function and constraints.

³Think about this and we will discuss it in the lecture.

DFSI: (3 and 4) Solve and interpret

- \triangleright The optimal solution of this LP is (884.21, 189.47).
- ▶ So the interpretation is... to produce 884.21 desks and 189.47 tables?
- ► Should we impose **integer constraints**?
 - ► An LP with integer constraints is called an **Integer Program** (IP).
 - Unfortunately, an IP may take an unreasonable time to solve.⁴
- ▶ But "producing 884.21 desks and 189.47 tables" is impossible!
 - ▶ It still **supports** our decision making.
 - ► We may **suggest** to produce, e.g., 884 desks and 189 tables.⁵
 - ▶ It may not really be optimal.
 - But we spend a very short time to make a good suggestion!

⁴We will discuss IP in details later in this semester.

⁵Why not 885 desks and 190 tables or the other two ways of rounding?

Produce and store!

- When we are making decisions, we may also consider what will happen in the future.
- ► This creates multi-period problems.
- ▶ In many cases, products produced today may be **stored** and then sold in the future.
 - ▶ Maybe daily capacity is not enough.
 - Maybe production is cheaper today.
 - ▶ Maybe the price is higher in the future.
- So the production decision must be jointly considered with the inventory decision.

Problem description

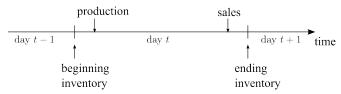
- ▶ We produce and sell a product.
- ► For the coming four days, the marketing manager has promised to fulfill the following amount of demands:
 - ▶ Days 1, 2, 3, and 4: 100, 150, 200, and 170 units, respectively.
- ▶ The unit production costs are different for different days:
 - ▶ Days 1, 2, 3, and 4: \$9, \$12, \$10, and \$12 per unit, respectively.
- ► The prices are all **fixed**. So maximizing profits is the same as minimizing costs.
- ▶ We may store a product and sell it later.
 - ► The **inventory cost** is \$1 per unit per day.⁶
 - E.g., producing 620 units on day 1 to fulfill all demands costs

$$9 \times 620 + 1 \times 150 + 2 \times 200 + 3 \times 170 = 6640$$
 dollars.

⁶Where does this inventory cost come from?

Problem description: timing

Timing:



- Beginning inventory + production sales = ending inventory.
- Inventory costs are calculated according to **ending inventory**.

Variables and objective function

▶ Let

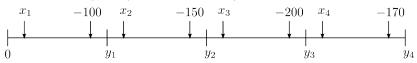
$$x_t$$
 = production quantity of day $t, t = 1, ..., 4$.
 y_t = ending inventory of day $t, t = 1, ..., 4$.

- ▶ It is important to specify "ending"!
- ► The objective function is

$$\min 9x_1 + 12x_2 + 10x_3 + 12x_4 + y_1 + y_2 + y_3 + y_4.$$

Constraints

▶ We need to keep an eye on our inventory:



- ▶ Day 1: $x_1 100 = y_1$.
- ▶ Day 2: $y_1 + x_2 150 = y_2$.
- ▶ Day 3: $y_2 + x_3 200 = y_3$.
- ▶ Day 4: $y_3 + x_4 170 = y_4$.
- ▶ These are typically called **inventory balancing** constraints.
- ▶ We also need to fulfill all demands at the moment of sales:
 - $x_1 \ge 100$, $y_1 + x_2 \ge 150$, $y_2 + x_3 \ge 200$, and $y_3 + x_4 \ge 170$.
- ▶ Also, production and inventory quantities cannot be negative.

The complete formulation

▶ The complete formulation is

min
$$9x_1 + 12x_2 + 10x_3 + 12x_4$$

 $+ y_1 + y_2 + y_3 + y_4$
s.t. $x_1 - 100 = y_1$
 $y_1 + x_2 - 150 = y_2$
 $y_3 + x_3 - 200 = y_3$
 $y_3 + x_4 - 170 = y_4$
 $x_1 \ge 100$
 $y_1 + x_2 \ge 150$
 $y_2 + x_3 \ge 200$
 $y_3 + x_4 \ge 170$
 $x_t, y_t > 0 \quad \forall t = 1, ..., 4.$

- ▶ May we simplify the formulation?
- ► Inventory balancing and nonnegativity together implies demand fulfillment!
 - ▶ Day 1: $x_1 100 = y_1$ and $y_1 \ge 0$ means $x_1 > 100$.
- ▶ So the formulation can just be

min
$$9x_1 + 12x_2 + 10x_3 + 12x_4$$

 $+ y_1 + y_2 + y_3 + y_4$
s.t. $x_1 - 100 = y_1$
 $y_1 + x_2 - 150 = y_2$
 $y_3 + x_3 - 200 = y_3$
 $y_3 + x_4 - 170 = y_4$
 $x_t, y_t > 0 \quad \forall t = 1, \dots, 4$

Terminology

Personnel scheduling

- ▶ Numbers of personnel required at an airport vary a lot among different time periods.
- ▶ How many people will you hire?
 - ► Each person works for eight hours **continuously**.
 - ▶ They may start their shifts at different time.
 - ightharpoonup Demands of personnel ("0–2", "2–4", and "4-6" all need 6 persons):

0-6	6-8	8-10	10 – 12	12 - 14	14 - 16	16-18	18 – 20	22 - 24
6	10	15	20	16	24	28	20	10

- ▶ LP is used to save more than \$6 million annually.
- ▶ Read the application vignette in Section 3.4 and the article on CEIBA.

Terminology

- ► Terminology.
- ► The graphical approach.
- ► Three types of LPs.
- ▶ Simple LP formulations.
- ► Compact LP formulations.

Compact formulations

- ▶ Most problems in practice are of large scales.
 - ▶ The number of variables and constraints are huge.
- ▶ Many variables can be grouped together:
 - E.g., x_t = production quantity of day t, t = 1, ..., 4.
- ▶ Many constraints can be grouped together:
 - E.g., $x_t \ge 0$ for all t = 1, ..., 4.
- ▶ In modeling large-scale problems, we use **compact formulations** to enhance readability and efficiency.
- ▶ We use the following three instruments:
 - ▶ Indices (i, j, k, ...).
 - ▶ Summation (\sum) .
 - ▶ For all (\forall) .

Compacting the objective function

- ► The problem:
 - ▶ We have four periods.
 - ▶ In each period, we first produce and then sell.
 - Unsold products become ending inventories.
 - ▶ Want to minimize the total cost.
- ► Indices:
 - ▶ Because things will **repeat in each period**, it is natural to use an index for periods. Let $t \in \{1, ..., 4\}$ be the index of periods.
- ► The objective function:

 - $ightharpoonup \min 9x_1 + 12x_2 + 10x_3 + 12x_4 + \sum_{t=1}^4 y_t.$
 - ▶ If we denote the unit cost on day t as C_t , t = 1, ..., 4:

$$\min \sum_{t=1}^{4} (C_t x_t + y_t).$$

Compacting the constraints

- ► The original constraints:
 - $x_1 100 = y_1, y_1 + x_2 150 = y_2, y_2 + x_3 200 = y_3, y_3 + x_4 170 = y_4.$
- ▶ Let's denote the demand on day t as D_t , t = 1, ..., 4.
- ► The compact constraint:
 - For $t = 2, ..., 4 : y_{t-1} + x_t D_t = y_t$.
 - We cannot apply this to day 1 as y_0 is undefined!
- ▶ To group the four constraints into one compact constraint, we add an additional decision variable y_0 :

$$y_t = \text{ending inventory of day } t, t = 0, ..., 4.$$

▶ Then the set of inventory balancing constraints are written as

$$y_{t-1} + x_t - D_t = y_t \quad \forall t = 1, ..., 4$$

▶ Certainly we need to set up the initial inventory: $y_0 = 0$.

The complete compact formulation

▶ The compact formulation is

min
$$\sum_{t=1}^{4} (C_t x_t + y_t)$$
s.t.
$$y_{t-1} + x_t - D_t = y_t \quad \forall t = 1, ..., 4$$

$$y_0 = 0$$

$$x_t, y_t \ge 0 \quad \forall t = 1, ..., 4.$$

- ▶ **Do not forget** " $\forall t = 1, ..., 4$ "! Without that, the formulation is wrong.
- ▶ Nonnegativity constraints for multiple sets of variables can be combined to save some " \geq 0".
- ▶ One convention is to:
 - Use **lowercase** letters for variables (e.g., x_t).
 - Use **uppercase** letters for parameters (e.g., C_t).

Parameter declaration

- ▶ When creating parameter sets, we write something like
 - denote C_t as the unit production cost on day t, t = 1, ..., 4.
 - ▶ Do not need to specify values, even though we have those values.
 - ► Need to specify the **range** through **indices**.
- ▶ Parameter declarations should be at the beginning of the formulation.
- ▶ Parameters and variables are just different.
 - Variables are those to be determined. We do have know there values before we solve the model.
 - ▶ Parameters are given with known values.
 - ▶ Parameters are **exogenous** and variables are **endogenous**.