Operations Research, Spring 2015 Pre-lecture Problems for Lecture 2

Instructor: Ling-Chieh Kung
Department of Information Management National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:10am, March 5, 2015. Please submit a hard copy of your work to the instructor mailbox in class. Late submissions will not be accepted. Each student must submit her/his individual work.

1. (0 point) Graphically solve the following LP:

$$
\begin{aligned}
\max & 5 x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 16 \\
& x_{1}+4 x_{2} \leq 20 \\
& 2 x_{1}+x_{2} \geq 6 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

2. (0 point) Bob is the owner of a furniture shop. He uses woods to make tables and chairs. Each day, he buys woods from his supplier at a cost of $\$ 50$ per unit. Each table requires 2 units of woods while each chair requires 1 unit. He , as well as his employees, needs to spend time on making these products. He can make 1 chair or 0.5 table in 1 hour. Each of his two employees, who are not as experiences as him, can make 0.8 chair or 0.3 tables in 1 hour. The outputs are always proportional to the amount of time they spend. Each of the two employees works 8 hours per day. Bob can work 12 hours per day. A table can be sold at $\$ 200$ and a chair can be sold at $\$ 80$. Formulate an LP that can find a production plan for Bob to maximize his daily profit.
3. (10 points) Tom is the owner of a furniture shop. He uses woods to make tables and chairs. Each day, he buys woods from his supplier at a cost of $\$ 50$ per unit. The maximum amount of woods that may be purchased is 9 units. Each table requires 2 units of woods while each chair requires 1 unit. He needs to spend time on making these products. He can make 1 chair or 0.4 table in 1 hour. The outputs are always proportional to the amount of time they spend. Tom can work 10 hours per day. A table can be sold at $\$ 200$ and a chair can be sold at $\$ 80$.
(a) (5 points) Formulate an LP that can find a production plan for Tom to maximize his daily profit.
(b) (5 points) Graphically solve the LP. Interpret your solution to make a suggestion to Tom.

Note. You are required to formulate a "linear program." Double check whether your program is really a linear one!

