Operations Research

The Simplex Method (Part 1)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Introduction

- In these two lectures, we will study how to solve an LP.
- The algorithm we will introduce is the simplex method.
- Developed by George Dantzig in 1947.
- Opened the whole field of Operations Research.
- Implemented in most commercial LP solvers.
- Very efficient for almost all practical LPs.
- With very simple ideas.
- The method is general in an indirect manner.
- There are many different forms of LPs.
- We will first show that each LP is equivalent to a standard form LP.
- Then we will show how to solve standard form LPs.
- Read Sections 4.1 to 4.4 of the textbook thoroughly!
- These two lectures will be full of algebra and theorems. Get ready!

Road map

- Standard form LPs.
- Basic solutions.
- Basic feasible solutions.
- The geometry of the simplex method.
- The algebra of the simplex method.

Standard form LPs

- First, let's define the standard form. ${ }^{1}$

Definition 1 (Standard form LP)

An LP is in the standard form if

- all the RHS values are nonnegative,
- all the variables are nonnegative, and
- all the constraints are equalities.
- RHS $=$ right hand sides. For any constraint

$$
g(x) \leq b, \quad g(x) \geq b, \quad \text { or } g(x)=b,
$$

b is the RHS.

- There is no restriction on the objective function.

[^0]
Finding the standard form

- How to find the standard form for an LP?
- Requirement 1: Nonnegative RHS.
- If it is negative, switch the LHS and the RHS.
- E.g.,

$$
2 x_{1}+3 x_{2} \leq-4
$$

is equivalent to

$$
-2 x_{1}-3 x_{2} \geq 4
$$

Finding the standard form

- Requirement 2: Nonnegative variables.
- If x_{i} is nonpositivie, replace it by $-x_{i}$. E.g.,

$$
2 x_{1}+3 x_{2} \leq 4, x_{1} \leq 0 \quad \Leftrightarrow \quad-2 x_{1}+3 x_{2} \leq 4, x_{1} \geq 0 .
$$

- If x_{i} is free, replace it by $x_{i}^{\prime}-x_{i}^{\prime \prime}$, where $x_{i}^{\prime}, x_{i}^{\prime \prime} \geq 0$. E.g.,

$$
2 x_{1}+3 x_{2} \leq 4, x_{1} \text { urs. } \Leftrightarrow 2 x_{1}^{\prime}-2 x_{1}^{\prime \prime}+3 x_{2} \leq 4, x_{1}^{\prime} \geq 0, x_{1}^{\prime \prime} \geq 0 .
$$

Finding the standard form

- Requirement 3: Equality constraints.
- For a " \leq " constraint, add a slack variable. E.g.,

$$
2 x_{1}+3 x_{2} \leq 4 \quad \Leftrightarrow \quad 2 x_{1}+3 x_{2}+x_{3}=4, \quad x_{3} \geq 0 .
$$

- For a " \geq " constraint, minus a surplus/excess variable. E.g.,

$$
2 x_{1}+3 x_{2} \geq 4 \quad \Leftrightarrow \quad 2 x_{1}+3 x_{2}-x_{3}=4, \quad x_{3} \geq 0
$$

- For ease of exposition, they will both be called slack variables.
- A slack variable measures the gap between the LHS and RHS.

An example

$$
\begin{aligned}
& \begin{array}{rrrlll}
\min & 3 x_{1} & +2 x_{2} & +4 x_{3} & \\
\text { s.t. } & x_{1} & +2 x_{2} & - & x_{3} & \geq \\
& x_{1} & -x_{2} & & & \\
& 2 x_{1} & +x_{2} & +x_{3} & = & 9
\end{array} \\
& x_{1} \geq 0, \quad x_{2} \leq 0, \quad x_{3} \text { urs. }
\end{aligned}
$$

An example

$$
\begin{aligned}
& \min 3 x_{1}-2 x_{2}+4 x_{3}-4 x_{4} \\
& \rightarrow \text { s.t. } x_{1}-2 x_{2}-x_{3}+x_{4}-x_{5}=6 \\
& \begin{aligned}
-x_{1} & -x_{2} \\
2 x_{1} & -x_{2}+x_{3}-x_{4}+x_{6}
\end{aligned}=8 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 6 .
\end{aligned}
$$

Standard form LPs in matrices

- Given any LP, we may find its standard form.
- With matrices, a standard form LP is expressed as

$$
\begin{aligned}
\min & c^{T} x \\
\mathrm{s.t.} & A x=b \\
& x \geq 0
\end{aligned}
$$

- E.g., for
- We will denote the number of constraints and variables as m and n.
- $A \in \mathbb{R}^{m \times n}$ is called the coefficient matrix.
- $b \in \mathbb{R}^{m}$ is called the RHS vector.
- $c \in \mathbb{R}^{n}$ is called the objective vector.
- The objective function can be either max or min.

Solving standard form LPs

- So now we only need to find a way to solve standard form LPs.
- How?
- A standard form LP is still an LP.
- If it has an optimal solution, it has an extreme point optimal solution! Therefore, we only need to search among extreme points.
- Our next step is to understand more about the extreme points of a standard form LP.

Road map

- Standard form LPs.
- Basic solutions.
- Basic feasible solutions.
- The geometry of the simplex method.
- The algebra of the simplex method.

Bases

- Consider a standard form LP with m constraints and n variables

$$
\begin{aligned}
\min & c^{T} x \\
\mathrm{s.t.} & A x=b \\
& x \geq 0
\end{aligned}
$$

- We may assume that rank $A=m$, i.e., all rows of A are independent. ${ }^{2}$
- This then implies that $m \leq n$. As the problem with $m=n$ is trivial, we will assume that $m<n$.
- For the system $A x=b$, now there are more columns than rows. Let's select some columns to form a basis:

Definition 2 (Basis)

A basis B of a standard form LP is a selection of m variables such that A_{B}, the matrix formed by the m corresponding columns of A, is invertible/nonsingular.
${ }^{2}$ This assumption is without loss of generality. Why?

Basic solutions

- By ignoring the other $n-m$ variables, $A x=b$ will have a unique solution (because A_{B} is invertible).
- Each basis uniquely defines a basic solution:

Definition 3 (Basic solution)

A basic solution to a standard form LP is a solution that (1) has $n-m$ variables being equal to 0 and (2) satisfies $A x=b$.

- The $n-m$ variables chosen to be zero are nonbasic variables.
- The remaining m variables are basic variables. They form a basis (i.e., A_{B}^{-1} is invertible; otherwise $A x=b$ has no solution).
- We use $x_{B} \in \mathbb{R}^{m}$ and $x_{N} \in \mathbb{R}^{n-m}$ to denote basic and nonbasic variables, respectively, with respect to a given basis B.
- We have $x_{N}=0$ and $x_{B}=A_{B}^{-1} b$.
- Note that a basic variable may be positive, negative, or zero!

Basic solutions: an example

- Consider an original LP

\min	$6 x_{1}$	$+8 x_{2}$
s.t.	x_{1}	$+2 x_{2} \leq 6$
	$2 x_{1}$	$+x_{2} \leq 6$
	$x_{i} \geq 0 \quad \forall i=1,2$	

and its standard form

$$
\begin{aligned}
& \min 6 x_{1}+8 x_{2} \\
& \text { s.t. } \begin{aligned}
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned}+x_{4}=6 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 4 \text {. }
\end{aligned}
$$

Basic solutions: an example

- In the standard form, $m=2$ and $n=4$.
- There are $n-m=2$ nonbasic variables.
- There are $m=2$ basic variables.
- Steps for obtaining a basic solution:
- Determine a set of m basic variables to form a basis B.
- The remaining variables form the set of nonbasic variables N.
- Set nonbasic variables to zero: $x_{N}=0$.
- Solve the m by m system $A_{B} x_{B}=b$ for the values of basic variables.
- For this example, we will solve a two by two system for each basis.

Basic solutions: an example

- The two equalities are

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =6 \\
2 x_{1}+x_{2} & +x_{4}
\end{aligned}=6 .
$$

- Let's try $B=\left\{x_{1}, x_{2}\right\}$ and $N=\left\{x_{3}, x_{4}\right\}$:

$$
\begin{aligned}
x_{1}+2 x_{2} & =6 \\
2 x_{1}+x_{2} & =6
\end{aligned}
$$

The solution is $\left(x_{1}, x_{2}\right)=(2,2)$. Therefore, the basic solution associated with this basis B is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,2,0,0)$.

- Let's try $B=\left\{x_{2}, x_{3}\right\}$ and $N=\left\{x_{1}, x_{4}\right\}$:

$$
\begin{aligned}
2 x_{2}+x_{3} & =6 \\
x_{2} & =6
\end{aligned}
$$

As $\left(x_{2}, x_{3}\right)=(6,-6)$, the basic solution is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,6,-6,0)$.

Bases

- In general, as we need to choose m out of n variables to be basic, we have at most $\binom{n}{m}$ different bases. ${ }^{3}$
- In this example, we have exactly $\binom{4}{2}=6$ bases.
- By examining all the six bases one by one, we may find all those associated basic variables:

Basis	Basic solution			
	x_{1}	x_{2}	x_{3}	x_{4}
$\left\{x_{1}, x_{2}\right\}$	2	2	0	0
$\left\{x_{1}, x_{3}\right\}$	3	0	3	0
$\left\{x_{1}, x_{4}\right\}$	6	0	0	-6
$\left\{x_{2}, x_{3}\right\}$	0	6	-6	0
$\left\{x_{2}, x_{4}\right\}$	0	3	0	3
$\left\{x_{3}, x_{4}\right\}$	0	0	6	6

${ }^{3}$ Why "at most"? Why not "exactly"?

Basic solutions v.s. bases

- For a basis, what matters are variables, not values.
- Consider another example

$$
\begin{array}{rrl}
\min & 6 x_{1} & +8 x_{2} \\
\text { s.t. } & x_{1} & +2 x_{2} \leq \\
& 2 x_{1} & +x_{2} \leq \\
& x_{i} \geq 0 & \leq i=12 \\
& \forall i=1,2
\end{array}
$$

and its standard form

$$
\begin{array}{rrllll}
\min & 6 x_{1} & +8 x_{2} \\
\text { s.t. } & x_{1} & +2 x_{2}+x_{3} & & \\
& 2 x_{1} & +x_{2} \\
& x_{i} \geq 0 & \forall i=1, \ldots, 4
\end{array}
$$

Basic solutions v.s. bases

- The six bases and the associated basic variables are listed below:

Basis	Basic solution			
	x_{1}	x_{2}	x_{3}	x_{4}
$\left\{x_{1}, x_{2}\right\}$	$\mathbf{6}$	$\mathbf{0}$	0	0
$\left\{x_{1}, x_{3}\right\}$	$\mathbf{6}$	0	$\mathbf{0}$	0
$\left\{x_{1}, x_{4}\right\}$	$\mathbf{6}$	0	0	$\mathbf{0}$
$\left\{x_{2}, x_{3}\right\}$	0	12	-18	0
$\left\{x_{2}, x_{4}\right\}$	0	3	0	9
$\left\{x_{3}, x_{4}\right\}$	0	0	6	12

- Three different bases result in the same basic solution!
- There are six distinct bases but only four distinct basic solutions.
- Number of distinct basic solutions \leq number of distinct bases $\leq\binom{ n}{m}$.
- When multiple bases correspond to one single basic solution, the LP is degenerate; otherwise, it is nondegenerate.
- We will discuss degeneracy only at the end of the next lecture.

Road map

- Standard form LPs.
- Basic solutions.
- Basic feasible solutions.
- The geometry of the simplex method.
- The algebra of the simplex method.

Basic feasible solutions

- Among all basic solutions, some are feasible.
- By the definition of basic solutions, they satisfy $A x=b$.
- If one also satisfies $x \geq 0$, it satisfies all constraints.
- In this case, it is called basic feasible solutions (bfs). ${ }^{4}$

Definition 4 (Basic feasible solution)

A basic feasible solution to a standard form LP is a basic solution whose basic variables are all nonnegative.

- Which are bfs?

Basis	Basic solution			
	x_{1}	x_{2}	x_{3}	x_{4}
$\left\{x_{1}, x_{2}\right\}$	2	2	0	0
$\left\{x_{1}, x_{3}\right\}$	3	0	3	0
$\left\{x_{1}, x_{4}\right\}$	6	0	0	-6
$\left\{x_{2}, x_{3}\right\}$	0	6	-6	0
$\left\{x_{2}, x_{4}\right\}$	0	3	0	3
$\left\{x_{3}, x_{4}\right\}$	0	0	6	6

${ }^{4}$ In the textbook, the abbreviation is " BF solutions".

Basic feasible solutions and extreme points

- Why bfs are important?
- They are just extreme points!

Proposition 1 (Extreme points and basic feasible solutions)
For a standard form LP, a solution is an extreme point of the feasible region if and only if it is a basic feasible solution to the LP.

Proof. Beyond the scope of this course. \square

- Though we cannot prove it here, let's get some intuitions with graphs. ${ }^{5}$

[^1]
An example

- There is a one-to-one mapping between bfs and extreme points.

Basis	Bfs?	Point	Basic solution			
			x_{1}	x_{2}	x_{3}	x_{4}
$\left\{x_{1}, x_{2}\right\}$	Yes	A	2	2	0	0
$\left\{x_{1}, x_{3}\right\}$	Yes	B	3	0	3	0
$\left\{x_{1}, x_{4}\right\}$	No	C	6	0	0	-6
$\left\{x_{2}, x_{3}\right\}$	No	D	0	6	-6	0
$\left\{x_{2}, x_{4}\right\}$	Yes	E	0	3	0	3
$\left\{x_{3}, x_{4}\right\}$	Yes	F	0	0	6	6

Another example

- Would you find the one-to-one correspondence?

Basis	Basic solution			
	x_{1}	x_{2}	x_{3}	x_{4}
$\left\{x_{1}, x_{2}\right\}$	6	0	0	0
$\left\{x_{1}, x_{3}\right\}$	6	0	0	0
$\left\{x_{1}, x_{4}\right\}$	6	0	0	0
$\left\{x_{2}, x_{3}\right\}$	0	12	-18	0
$\left\{x_{2}, x_{4}\right\}$	0	3	0	9
$\left\{x_{3}, x_{4}\right\}$	0	0	6	12

Optimality of basic feasible solutions

- What's the implication of the previous proposition?

Proposition 2 (Optimality of basic feasible solutions)

For a standard form LP, if there is an optimal solution, there is an optimal basic feasible solution.

Proof. We know if there is an optimal solution, there is an optimal extreme point solution. Moreover, we know extreme points are just bfs. The proof then follows.

Solving standard form LPs

- To find an optimal solution:
- Instead of searching among all extreme points, we may search among all bfs.
- But the two sets are equally large! What is the difference?
- Extreme points are defined with geometry but bfs are with algebra.
- Checking whether a solution is an extreme point is hard (for a computer).
- Checking whether a solution is basic feasible is easy (for a computer).
- Given an LP:
- Enumerating all extreme points is hard.
- Enumerating all bfs is possible.

Solving standard form LPs

- We are now closer to solve a general LP:
- We may enumerate all the bfs, compare them, and find the best one.
- If this LP has an optimal solution, that best bfs is optimal.
- Unfortunately:
- For a standard form LP with n variables and m constraints, we have at most $\binom{n}{m}$ bfs. Listing them takes too much time! ${ }^{6}$
- We need to improve the search procedure.
- We need to analyze bfs more deeply.
- We need to understand how they are connected.
- Let's define adjacent bfs.
${ }^{6}$ The complexity is $O\left(\binom{n}{m}\right)=O(n!)$; it is an exponential-time algorithm.

Adjacent basic feasible solutions

- Two bfs are either adjacent or not:

Definition 5 (Adjacent bases and bfs)

Two bases are adjacent if exactly one of their variable is different. Two bfs are adjacent if their associated bases are adjacent.

- $\left\{x_{1}, x_{2}\right\}$ and $\left\{x_{1}, x_{4}\right\}$ are adjacent.
- $\left\{x_{1}, x_{2}\right\}$ and $\left\{x_{3}, x_{4}\right\}$ are not adjacent.
- How about $\left\{x_{1}, x_{2}\right\}$ and $\left\{x_{2}, x_{4}\right\}$?

Adjacent basic feasible solutions

- A pair of adjacent bfs corresponds to a pair of "adjacent" extreme points, i.e., extreme points that are on the same edge.
- Switching from a bfs to its adjacent bfs is moving along an edge.

Basis	Point	Basic solution			
		x_{1}	x_{2}	x_{3}	x_{4}
$\left\{x_{1}, x_{2}\right\}$	A	2	2	0	0
$\left\{x_{1}, x_{3}\right\}$	B	3	0	3	0
$\left\{x_{2}, x_{4}\right\}$	E	0	3	0	3
$\left\{x_{3}, x_{4}\right\}$	F	0	0	6	6

A three-dimensional example

min whatever

$$
x_{i} \geq 0 \quad \forall i=1, \ldots, 6
$$

Basis	Point	Basic solution		
		x_{1}	x_{2}	x_{3}
$\left\{x_{4}, x_{5}, x_{6}\right\}$	A	0	0	0
$\left\{x_{1}, x_{5}, x_{6}\right\}$	B	2	0	0
$\left\{x_{1}, x_{2}, x_{6}\right\}$	C	2	1	0
$\left\{x_{2}, x_{4}, x_{6}\right\}$	D	0	1	0
$\left\{x_{3}, x_{4}, x_{5}\right\}$	E	0	0	1
$\left\{x_{1}, x_{3}, x_{5}\right\}$	F	1	0	1
$\left\{x_{1}, x_{2}, x_{3}\right\}$	G	1	1	1
$\left\{x_{2}, x_{3}, x_{4}\right\}$	H	0	1	1

A better way to search

- Given all these concepts, how would you search among bfs?
- At each bfs, move to an adjacent bfs that is better!
- Around the current bfs, there should be some improving directions.
- Otherwise, the bfs is optimal.
- Next we will introduce the simplex method, which utilize this idea in an elegant way.

Road map

- Standard form LPs.
- Basic solutions.
- Basic feasible solutions.
- The geometry of the simplex method.
- The algebra of the simplex method.

The simplex method

- All we need is to search among bfs.
- Geometrically, we search among extreme points.
- Moving to an adjacent bfs is to move along an edge.
- Questions:
- Which edge to move along?
- When to stop moving?
- All these must be done with algebra rather than geometry.
- Nevertheless, geometry provides intuitions.
- Algebraically, to move to an adjacent bfs, we need to replace one basic variable by a nonbasic variable.
- E.g., moving from $B_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ to $B_{2}=\left\{x_{2}, x_{3}, x_{5}\right\}$.
- There are two things to do:
- Select one nonbasic variable to enter the basis, and
- Select one basic variable to leave the basis.

The entering variable

- Selecting one nonbasic variable to enter means making it nonzero.
- One constraint becomes nonbinding.
- We move along the edge that moves away from the constraint.
- We will illustrate this idea with the following LP

\[

\]

and its standard form

$$
\begin{aligned}
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{aligned}
$$

The entering variable

- For the bfs $x^{1}=(0,0,4,8,3)$:
- The basis is $\left\{x_{3}, x_{4}, x_{5}\right\}$.
- x_{1} and x_{2} are nonbasic.
- x_{1} and x_{2} may enter the basis.
- Letting x_{1} enters
\Rightarrow making $x_{1}>0$
\Rightarrow moving away from $x_{1} \geq 0$
\Rightarrow moving along direction A.
- Letting x_{2} enters
\Rightarrow making $x_{2}>0$
\Rightarrow moving away from $x_{2} \geq 0$
\Rightarrow moving along direction B.

The entering variable

- For the bfs $x^{2}=(2,0,0,4,3)$:
- The basis is $\left\{x_{1}, x_{4}, x_{5}\right\}$.
- x_{2} and x_{3} are nonbasic.
- x_{2} and x_{3} may enter the basis.
- Letting x_{2} enters
\Rightarrow making $x_{2}>0$
\Rightarrow moving away from $x_{2} \geq 0$
\Rightarrow moving along direction D.
- Letting x_{3} enters
\Rightarrow making $x_{3}>0$
\Rightarrow moving away from

$$
2 x_{1}-x_{2}+x_{3}=4
$$

\Rightarrow moving along direction C.

The leaving variable

- Suppose we have chosen one entering variable.
- We have chosen one edge to move along.
- How to choose a leaving variable?
- When should we stop?
- Geometrically, we stop when we "hit a constraint".
- We are moving along edges, so all equalities constraints will remain to be satisfied. Only nonnegativity constraints may be violated.
- Albegraically, we stop when one basic variable decreases to 0 .
- This basic variable will leave the basis.
- As it becomes 0, it becomes a nonbasic variable.

The leaving variable

- For the bfs x^{1}, suppose we move along direction A.
- The original basis is $\left\{x_{3}, x_{4}, x_{5}\right\}$.
- x_{1} enters the basis.
- We first hit $2 x_{1}-x_{2} \leq 4$.
- x_{3} becomes 0 .
- x_{3} becomes nonbasic.
- x_{3} leaves the basis.
- The new basis is $\left\{x_{1}, x_{4}, x_{5}\right\}$.

The leaving variable

- For the bfs x^{2}, suppose we move along direction D.
- The original basis is $\left\{x_{1}, x_{4}, x_{5}\right\}$.
- x_{2} enters the basis.
- We first hit $2 x_{1}+x_{2} \leq 8$.
- x_{4} becomes 0 .
- x_{4} becomes nonbasic.
- x_{4} leaves the basis.
- The new basis is $\left\{x_{1}, x_{2}, x_{5}\right\}$.

An iteration

- At a bfs, we move to another better bfs.
- We first choose which direction to go (the entering variable). That should be an improving direction along an edge.
- We then determine when to stop (the leaving variable). That depends on the first constraint we hit.
- We may then treat the new bfs as the current bfs and then repeat.
- We stop when there is no improving direction.
- The process of moving to the next bfs is call an iteration.

The simplex method

- The simplex method is simple:
- It suffices to move along edges (because we only need to search among extreme points).
- At each point, the number of directions to search for is small (because we consider only edges).
- For each improving direction, the stopping condition is simple: Keep moving forwards until we cannot.
- The simplex method is smart:
- When at a point there is no improving direction along an edge, the point is optimal.
- Next let's know exactly how to run the simplex method in algebra.

Road map

- Standard form LPs.
- Basic solutions.
- Basic feasible solutions.
- The geometry of the simplex method.
- The algebra of the simplex method.

The simplex method

- To introduce the algebra of the simplex method, let's consider the following LP

$$
\begin{array}{rrl}
\min & -2 x_{1} & -3 x_{2} \\
\text { s.t. } & x_{1} & +2 x_{2} \leq 6 \\
& 2 x_{1}+x_{2} \leq 8 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

and its standard form

$$
\begin{array}{rrl}
\text { min } & -2 x_{1} & -3 x_{2} \\
\text { s.t. } & x_{1} & +2 x_{2}+x_{3} \\
& 2 x_{1} & +x_{2} \\
& x_{i} \geq 0 \quad x_{4}=6 \\
& \forall i=1, \ldots, 4 .
\end{array}
$$

System of equalities

- We need to keep track of the objective value.
- We want to keep improving our solution.
- We will use $z=-2 x_{1}-3 x_{2}$ to denote the objective value.
- The objective value will sometimes be called the z value.
- Once we keep in mind that (1) we are minimizing z and (2) all variables (except z) must be nonnegativie, the standard form is nothing but a system of three equalities:

$$
\begin{aligned}
z+2 x_{1} & +3 x_{2} \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned}
$$

- Note that $z=-2 x_{1}-3 x_{2}$ is expressed as $z+2 x_{1}+3 x_{2}=0$.
- This "constraint" (which actually represents the objective function) will be called the 0th constraint.
- We will repeatedly use Linear Algebra to solve the system.

An initial bfs

- To start, we need to first have an initial bfs.
- For this example, a basis is a set of two variables such that A_{B}, the matrix formed by the two corresponding columns, is invertible.
- By satisfying $A_{B} x_{B}=b$, a bfs has all its basic variables x_{B} nonnegative.
- How may we get one bfs?
- Investigate the system in details:

$$
\begin{aligned}
z+2 x_{1} & +3 x_{2} \\
& =0 \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned}
$$

- Selecting x_{3} and x_{4} definitely works!
- In the system, these two columns form an identity matrix: $A_{B}=I{ }^{7}$
- Moreover, in a standard form LP, the RHS b are nonnegative.
- Therefore, $x_{B}=A_{B}^{-1} b=I b=b \geq 0$.
${ }^{7}$ For what kind of LPs does this identity matrix exist?

Improving the current bfs

$$
\left.\begin{array}{rl}
z+2 x_{1} & +3 x_{2} \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{array}\right)=0 .+x_{4}=8 .
$$

- Let us start from $x^{1}=(0,0,6,8)$ and $z_{1}=0$.
- To move, let's choose a nonbasic variable to enter. x_{1} or x_{2} ?
- The 0th constraints tells us that entering either variable makes z smaller: When one goes up, z goes down to maintain the equality.
- For no reason, let's choose x_{1} to enter.
- When to stop?
- Now x_{1} goes up from 0 .
- $(0,0,6,8) \rightarrow(1,0,5,6) \rightarrow(2,0,4,4) \rightarrow \cdots$. Note that x_{2} remains 0 .
- We will stop at $(4,0,2,0)$, i.e., when x_{4} becomes 0 .
- This is indicated by the ratio of the RHS and entering column: Because $\frac{8}{2}<\frac{6}{1}, x_{4}$ becomes 0 sooner than x_{3}.
- We move to $x^{2}=(4,0,2,0)$ with $z_{2}=-8$.

Keep improving the current bfs

$$
\begin{aligned}
z+2 x_{1} & +3 x_{2} \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned}
$$

- So far so good!
- Let's improve $x^{2}=(4,0,2,0)$ by moving to the next bfs.
- One of x_{2} and x_{4} may enter.
- According to the 0th row, we should let x_{2} enter. ${ }^{8}$
- When x_{2} goes up and x_{4} remains 0 :
- The 2 nd row says x_{2} can at most become 8 (and then x_{1} becomes 0).
- In the 1st row... how will x_{1} and x_{3} change???????
- An easier way is to update the system before the 2nd move.
- So that in each row there is only one basic variable.
- Let's see how to update the system every time when we make a move.
${ }^{8}$ This statement is actually wrong. Why?

Rewriting the standard form

- Recall that a standard form LP is

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

- Given a basis B, we may split x into $\left(x_{B}, x_{N}\right)$.
- We may also split c into $\left(c_{B}, c_{N}\right)$ and A into $\left(A_{B}, A_{N}\right)$.
- $c_{B} \in \mathbb{R}^{m}, c_{N} \in \mathbb{R}^{n-m}, A_{B} \in \mathbb{R}^{m \times m}$, and $A_{N} \in \mathbb{R}^{m \times(n-m)}$.
- With the splits, the LP becomes

$$
\begin{array}{rlrl}
\min & c_{B}^{T} x_{B}+c_{N}^{T} x_{N} & \min & c_{B}^{T}\left[A_{B}^{-1}\left(b-A_{N} x_{N}\right)\right]+c_{N}^{T} x_{N} \\
\text { s.t. } & A_{B} x_{B}+A_{N} x_{N}=b \\
& x_{B}, x_{N} \geq 0 . & \text { or } & \text { s.t. }
\end{array} x_{B}=A_{B}^{-1}\left(b-A_{N} x_{N}\right), ~ x_{B}, x_{N} \geq 0 . ~ l
$$

Rewriting the standard form

- With some more algebra, the LP becomes

$$
\begin{aligned}
\min & c_{B}^{T} A_{B}^{-1} b-\left(c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T}\right) x_{N} \\
\text { s.t. } & x_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

- By expressing the objective function by an equation with z, the LP can be expressed as
z

$$
\begin{array}{rlrl}
+\left(c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}\right) x_{N} & =c_{B}^{T} A_{B}^{-1} b & & \text { (0th row) } \\
I x_{B}+ & A_{B}^{-1} A_{N} x_{N} & =A_{B}^{-1} b . & \\
\text { (1st to } m \text { th row })
\end{array}
$$

Rewriting the standard form

- What are we doing?
- Given a basis B, we update the system to make two things happen at the basic columns:
- There is an identity matrix at the 1 st to m th row:
z

$$
\begin{aligned}
+\quad\left(c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T}\right) x_{N} & =c_{B}^{T} A_{B}^{-1} b \quad(0 \text { th row }) \\
I x_{B}+\quad A_{B}^{-1} A_{N} x_{N} & =A_{B}^{-1} b . \quad(1 \text { st to } m \text { th row })
\end{aligned}
$$

- All numbers are zero at the 0th row:
z

$$
\begin{array}{rlrl}
\square+\left(c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T}\right) x_{N} & =c_{B}^{T} A_{B}^{-1} b & \text { (0th row) } \\
I x_{B}+ & A_{B}^{-1} A_{N} x_{N} & =A_{B}^{-1} b & \text { (1st to } m \text { th row })
\end{array}
$$

- Then we know what will happen when a nonbasic variable enters!

Improving the current bfs (the 2nd attempt)

- Recall that for the system

$$
\begin{aligned}
z+2 x_{1} & +3 x_{2} \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned}
$$

we start from $x^{1}=(0,0,6,8)$ with $z_{1}=0$.

- For the basic columns (the 3rd and 4th ones), indeed we have the identity matrix and zeros.
- Then we know x_{1} enters and x_{4} leaves.
- The basis becomes $\left\{x_{1}, x_{3}\right\}$.
- We need to update the system to

$$
z+\square \begin{array}{ll}
+ & ? x_{2} \\
+ & ? x_{2} \\
+ & ? x_{2}
\end{array}+\square x_{3} \begin{array}{llll}
+ & ? x_{4} & = & 0 \\
+ & ? x_{4} & = & 6 \\
+ & ? x_{4} & = & 8
\end{array}
$$

- How? Elementary row operations!

Updating the system

- Starting from:

$$
\begin{aligned}
z+2 x_{1} & +3 x_{2} \\
& =0 \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned}
$$

- Multiply (2) by $\frac{1}{2}: x_{1}-\frac{1}{2} x_{2}+\frac{1}{2} x_{4}=4$.
- Multiply (2) by -1 and then add it into (1): $\frac{3}{2} x_{2}+x_{3}-\frac{1}{2} x_{4}=2$.
- Multiply (2) by -1 and then add it into (0): $z+2 x_{2}-x_{4}=-8$.
- Collectively, the system becomes

$$
\begin{align*}
z & +2 x_{2} & -x_{4} & =-8 \tag{0}\\
& +\frac{3}{2} x_{2}+x_{3} & -\frac{1}{2} x_{4} & =2 \tag{1}\\
x_{1} & +\frac{1}{2} x_{2} & & +\frac{1}{2} x_{4} \tag{2}
\end{align*}=4 .
$$

Improving the current bfs (finally!)

- Given the updated system

$$
\begin{align*}
z & +2 x_{2} & -x_{4} & =-8 \tag{0}\\
& +\frac{3}{2} x_{2}+x_{3} & -\frac{1}{2} x_{4} & =2 \tag{1}\\
x_{1} & +\frac{1}{2} x_{2} & & +\frac{1}{2} x_{4} \tag{2}
\end{align*}=4, ~ l
$$

we now know how to do the next iteration.

- We are at $x^{2}=(4,0,2,0)$ with $z_{2}=-8$.
- One of x_{2} and x_{4} may enter.
- If x_{2} enters, z will go down. Good!
- If x_{4} enters, z will go up. Bad.
- Let x_{2} enter:
- Row 1: When x_{2} goes up, x_{3} goes down. x_{2} can be as large as $\frac{2}{3 / 2}=\frac{4}{3}$.
- Row 2: When x_{2} goes up, x_{1} goes down. x_{2} can be as large as $\frac{4}{1 / 2}=8$.
- So x_{3} becomes 0 sooner than $x_{1} . x_{3}$ leaves the basis.
- The basic variables become x_{1} and x_{2}. Let's update again.

Improving once more

- Given the system

$$
\begin{align*}
z & +2 x_{2} & -x_{4} & =-8 \tag{0}\\
& +\frac{3}{2} x_{2}+x_{3} & -\frac{1}{2} x_{4} & =2 \tag{1}\\
x_{1} & +\frac{1}{2} x_{2} & & +\frac{1}{2} x_{4} \tag{2}
\end{align*}=4,
$$

we now need to update it to fit the new basis $\left\{x_{1}, x_{2}\right\}$.

- Multiply (1) by $\frac{2}{3}: x_{2}+\frac{2}{3} x_{3}-\frac{1}{3} x_{4}=\frac{4}{3}$.
- Multiply (the updated) (1) by $-\frac{1}{2}$ and add it to (2).
- Multiply (the updated) (1) by -2 and add it to (0).
- We get

$$
\begin{align*}
& z \\
& -\frac{4}{3} x_{3}-\frac{1}{3} x_{4}=-\frac{32}{3} \tag{0}\\
& x_{2}+\frac{2}{3} x_{3}-\frac{1}{3} x_{4}=\frac{4}{3} \tag{1}\\
& x_{1} \quad-\frac{1}{3} x_{3}+\frac{2}{3} x_{4}=\frac{10}{3} \text {. } \tag{2}
\end{align*}
$$

No more improvement!

- The system

$$
\begin{align*}
& z \quad-\frac{4}{3} x_{3} \quad-\quad \frac{1}{3} x_{4}=-\frac{32}{3} \tag{0}\\
& x_{2}+\frac{2}{3} x_{3}-\frac{1}{3} x_{4}=\frac{4}{3} \tag{1}\\
& -\frac{1}{3} x_{3}+\frac{2}{3} x_{4}=\frac{10}{3} \tag{2}
\end{align*}
$$

tells us that the new bfs is $x^{3}=\left(\frac{10}{3}, \frac{4}{3}, 0,0\right)$ with $z_{3}=-\frac{32}{3}$.

- Updating the system also gives us the new bfs and its objective value.
- Now... no more improvement is needed!
- Entering x_{3} makes things worse (z must go up).
- Entering x_{4} also makes things worse.
- x^{3} is an optimal solution. ${ }^{9}$ We are done!
${ }^{9}$ This is indeed true, though a rigorous proof is omitted.

Visualizing the iterations

- Let's visualize this example and relate bfs with extreme points.
- The initial bfs corresponds to $(0,0)$.
- After one iteration, we move to $(4,0)$.
- After two iterations, we move to $\left(\frac{10}{3}, \frac{4}{3}\right)$, which is optimal.
- Please note that we move along edges to search among extreme points!

Summary

- To run the simplex method:
- Find an initial bfs with its basis. ${ }^{10}$
- Among those nonbasic variables with positive coefficients in the 0th row, choose one to enter. ${ }^{11}$
- If there is none, terminate and report the current bfs as optimal.
- According to the ratios from the basic and RHS columns, decide which basic variable should leave. ${ }^{12}$
- Find a new basis.
- Make the system fit the requirements for basic columns:
- Identity matrix in constraints (1st to m th row).
- Zeros in the objective function (0th row).
- Repeat.

[^2]
The tableau representation

- Just as what we did for Gaussian eliminations, we typically omit variables when updating those systems.
- We organize coefficients into tableaus.
- As the column with z never changes, we do not include it in a tableau.
- For our example, the initial system

$$
\begin{aligned}
z+2 x_{1} & +3 x_{2} \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned}
$$

can be expressed as

- The basic columns have zeros in the 0th row

2	3	0	0	0
1	2	1	0	$x_{3}=6$
2	1	0	1	$x_{4}=8$

- The identity matrix associates each row with a basic variable.
- A posivie number in the 0th row of a nonbasic column means that variable can enter.

Using tableaus rather than systems

$$
\begin{aligned}
& \begin{aligned}
z+2 x_{1} & +3 x_{2} \\
x_{1} & +2 x_{2}+x_{3} \\
2 x_{1} & +x_{2}
\end{aligned} \\
& \text { z } \\
& z \\
& \begin{aligned}
+2 x_{2}-x_{4} & =-8 \\
+\frac{3}{2} x_{2}+x_{3}-\frac{1}{2} x_{4} & =2 \\
+\frac{1}{2} x_{2} & =\frac{1}{2} x_{4}
\end{aligned} \\
& \begin{aligned}
x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{4} & =4 \\
& \downarrow \\
-\frac{4}{3} x_{3}-\frac{1}{3} x_{4} & =-\frac{32}{3}
\end{aligned} \\
& \begin{array}{cccc|c}
0 & 2 & 0 & -1 & -8 \\
\hline 0 & \frac{3}{2} & 1 & -\frac{1}{2} & x_{3}=2 \\
1 & \frac{1}{2} & 0 & \frac{1}{2} & x_{1}=4
\end{array} \\
& x_{2}+\frac{2}{3} x_{3}-\frac{1}{3} x_{4}=\frac{4}{3} \\
& x_{1} \quad-\frac{1}{3} x_{3}+\frac{2}{3} x_{4}=\frac{10}{3}
\end{aligned}
$$

The second example

- Consider another example:

$$
\begin{array}{rc}
\max & x_{1} \\
\mathrm{s.t.} & 2 x_{1}-x_{2} \leq 4 \\
& 2 x_{1}+x_{2} \leq 8 \\
& \\
& x_{2} \leq 3 \\
& x_{i} \geq 0
\end{array} \quad \forall i=1,2 .
$$

- The standard form is

The first iteration

- We prepare the initial tableau. We have $x^{1}=(0,0,4,8,3)$ and $z_{1}=0$.

-1	0	0	0	0	0
2	-1	1	0	0	$x_{3}=4$
2	1	0	1	0	$x_{4}=8$
0	1	0	0	1	$x_{5}=3$

- For this maximization problem, we look for negative numbers in the 0th row. Therefore, x_{1} enters.
- Those numbers in the 0th row are called reduced costs.
- The 0th row is $z-x_{1}=0$. Increasing x_{1} can increase z.
- "Dividing the RHS column by the entering column" tells us that x_{3} should leave (it has the minimum ratio). ${ }^{13}$
- This is called the ratio test. We always look for the smallest ratio.
${ }^{13}$ The 0 in the 3rd row means that increasing x_{1} does not affect x_{5}.

The first iteration

- x_{1} enters and x_{3} leaves. The next tableau is found by pivoting at 2 :
$\left.\begin{array}{ccccc|ccccc|c}-1 & 0 & 0 & 0 & 0 & 0 \\ \hline 2 & -1 & 1 & 0 & 0 & x_{3}=4 \\ 2 & 1 & 0 & 1 & 0 & x_{4}=8 \\ 0 & 1 & 0 & 0 & 1 & x_{5}=3\end{array} \quad \rightarrow \quad \begin{array}{ccccc}0 & \frac{-1}{2} & \frac{1}{2} & 0 & 0\end{array}\right] 2$
- The new bfs is $x^{2}=(2,0,0,4,3)$ with $z_{2}=2$.
- Continue?
- There is a negative reduced cost in the 2 nd column: x_{2} enters.
- Ratio test:
- That $-\frac{1}{2}$ in the 1 st row shows that increasing x_{2} makes x_{1} larger. Row 1 does not participate in the ratio test.
- For rows 2 and 3 , row 2 wins (with a smaller ratio).

The second iteration

- x_{2} enters and x_{4} leaves. We pivot at 2 .
- The second iteration is

0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2					4	$\frac{1}{4}$	0	3
	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_{1}=2$	\rightarrow			0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_{1}=3$
0	2	-1	1	0	$x_{4}=4$		0			$\frac{-1}{2}$	$\frac{1}{2}$	0	$x_{2}=2$
0	1	0	0	1	$x_{5}=3$				0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$x_{5}=1$

- The third bfs is $x^{3}=(3,2,0,0,1)$ with $z_{3}=3$.
- It is optimal (why?).
- Typically we write the optimal solution we find as x^{*} and optimal objective value as z^{*}.

Verifying our solution

- The three basic feasible solutions we obtain are
- $x^{1}=(0,0,4,8,3)$.
- $x^{2}=(2,0,0,4,3)$.
- $x^{3}=x^{*}=(3,2,0,0,1)$.

Do they fit our graphical approach?

[^0]: ${ }^{1}$ In the textbook, this form is called the augmented form. In the world of OR, however, "standard form" is a more common name for LPs in this format.

[^1]: ${ }^{5}$ Please note that these "intuitions" are never rigorous.

[^2]: ${ }^{10}$ How to find one?
 ${ }^{11}$ What if there are multiple?
 ${ }^{12}$ What if there is a tie? What if the denominator is 0 or negative?

