Operations Research The Simplex Method (Part 2)

Ling-Chieh Kung

Department of Information Management National Taiwan University

Introduction

- Last time we introduced the simplex method.
- ▶ There remain some unsolved problem:
 - ▶ How to find an initial bfs? How to know whether an LP is infeasible?
 - ▶ What if an LP is unbounded?
 - ▶ What if multiple nonbasic variables may be entered?
 - What if there is a tie in a ratio test?
 - How efficient the simplex method is?
- ▶ In this lecture, we will address these issues (and some more).
- ▶ Read Sections 4.5 and 4.6 thoroughly.
 - ▶ Sections 4.8 and 4.9 contain discussions regarding efficiency.

Road map

• Information on tableaus.

- Finding an initial bfs.
- Degeneracy and efficiency.
- ▶ The matrix way of doing simplex.

Identifying unboundedness

- ▶ When is an LP **unbounded**?
- ▶ An LP is unbounded if:
 - ▶ There is an improving direction.
 - ▶ Along that direction, we may move forever.
- ▶ When we run the simplex method, this can be easily checked in a simplex tableau.
- Consider the following example:

Unbounded LPs

▶ The standard form is:

r

▶ The first iteration:

-1	0	0	0	0		0	-1	1	0	1
1	-1	1	0	$x_3 = 1$	\rightarrow	1	-1	1	0	$x_1 = 1$
2	-1	0	1	$x_4 = 4$		0	1	-2	1	$x_4 = 2$

Unbounded LPs

▶ The second iteration:

0	-1	1	0	1		0	0	-1	1	3
1	-1	1	0	$x_1 = 1$	\rightarrow	1	0	-1	1	$x_1 = 3$
0	1	-2	1	$x_4 = 2$		0	1	-2	1	$x_2 = 2$

▶ How may we do the third iteration? The **ratio test** fails!

- Only rows with positive denominators participate in the ratio test.
- ▶ Now all the denominators are nonpositive! Which variable to leave?
- ▶ No one should leave: Increasing x_3 makes x_1 and x_2 become larger.
 - Row 1: $x_1 x_3 + x_4 = 3$.
 - Row 2: $x_2 2x_3 + x_4 = 2$.
- ► The direction is thus an **unbounded improving direction**.

Information on tableaus	Finding an initial bfs	Degeneracy and efficiency	The matrix way
000000000	00000000000000000	00000000	0000000000

Unbounded improving directions

• At (3,2), when we enter x_3 , we move along the rightmost edge. Geometrically, both nonbinding constraints $x_1 \ge 0$ and $x_2 \ge 0$ are "behind us".

Detecting unbounded LPs

▶ For a minimization LP, whenever we see any column in any tableau

such that $\bar{c}_j > 0$ and $d_i \leq 0$ for all i = 1, ..., m, we may stop and conclude that this LP is unbounded.

- $\bar{c}_j > 0$: This is an improving direction.
- ▶ $d_i \leq 0$ for all i = 1, ..., m: This is an unbounded direction.

▶ What is the unbounded condition for a **maximization** problem?

• Consider another example (in standard form directly):

Information on tableaus	Finding an initial bfs	Degeneracy and efficiency	The matrix way
0000000000	00000000000000000	00000000	0000000000

▶ In two iterations, we find an optimal solution:

-1	-1	0	0	0	0		0	-1	$\frac{1}{2}$	$0 \frac{1}{2}$	0	6
$\begin{array}{c}1\\\hline2\\1\end{array}$	2 1 1	1 0 0	0 1 0	0 0 1	$x_3 = 12$ $x_4 = 12$ $x_5 = 7$	\rightarrow	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\frac{\frac{3}{2}}{\frac{1}{2}}$ $\frac{\frac{1}{2}}{\frac{1}{2}}$		$1 - 0 \frac{1}{2}$ 0 - 0		$x_3 = 6$ $x_1 = 6$ $x_5 = 1$
							0	0	0	0	1	7
						\rightarrow	0	0	1	1	-2	$x_3 = 3$
							1	0	0	1	-2	$x_1 = 5$
							0	1	0	-1	2	$x_2 = 2$

Information on tableaus $000000000000000000000000000000000000$	Finding an initial bfs 000000000000000000000000000000000000	Degeneracy and efficiency 000000000	The matrix way 000000000

- ▶ In practice, we will simply stop and report the optimal solution.
- ▶ But here the optimal tableau shows the existence of **multiple** optimal solutions.

0	0	0	0	1	7
0	0	1	1	-2	$x_3 = 3$
1	0	0	1	-2	$x_1 = 5$
0	1	0	-1	2	$x_2 = 2$

- ▶ What does a zero reduced cost mean?
 - When we increase x_4 , z will not be affected.
- ▶ As the current solution is optimal, if there is a direction such that moving along it does not change the objective value, all points along that direction are optimal.

- At an optimal solution (5, 2), by entering x_4 , we move along $x_1 + x_2 = 7$. All points on that edge are optimal.
- For a nondegenerate LP, at an optimal tableau, if a nonbasic variable x_j has a zero reduced cost, the LP has multiple optimal solutions.
 - ▹ For a degenerate LP (to be discussed later in this lecture), the condition is not sufficient.
 - In practice, knowing this is not very valuable.

Road map

- ▶ Information on tableaus.
- Finding an initial bfs.
- Degeneracy and efficiency.
- ▶ The matrix way of doing simplex.

Feasibility of an LP

 \blacktriangleright When an LP

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax \leq b\\ & x > 0 \end{array}$$

satisfies $b \ge 0$, finding a bfs for its standard form

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax + Iy = b \\ & x, y \ge 0, \end{array}$

is trivial.

- We may form a feasible basis with all the slack variables y.
- What if there are some "=" or " \geq " constraints?

Feasibility of an LP

 \blacktriangleright For example, given an LP

whose standard form is

it is nontrivial to find a feasible basis (if there is one).

Information on tableaus	Finding an initial bfs	Degeneracy and efficiency	The matrix way 000000000
0000000000	000000000000000000000000000000000000	000000000	

The two-phase implementation

- ► To find an initial bfs (or show that there is none), we may apply the **two-phase implementation**.
- Given a standard form LP (P), we construct a **phase-I LP** (Q):¹

$$\begin{array}{cccc} \min & c^T x & \min & 1^T y \\ (P) & \text{s.t.} & Ax = b & & (Q) & \text{s.t.} & Ax + Iy = b \\ & & & x \ge 0 & & & x, y \ge 0. \end{array}$$

• (Q) has a trivial bfs (x, y) = (0, b), so we can apply the simplex method on (Q). But so what?

Proposition 1

(P) is feasible if and only if (Q) has an optimal bfs $(x, y) = (\bar{x}, 0)$. In this case, \bar{x} is a bfs of (P).

¹Even if in (P) we have a maximization objective function, (Q) is still the same.

The two-phase implementation

- After we solve (Q), either we know (P) is infeasible or we have a feasible basis of (P).
- ▶ In the latter case, we can recover the objective function of the original (P) to get a **phase-II LP**.
 - "The phase-II LP" is nothing but the original (P).
 - ▶ Phase I for a **feasible** solution and phase II for an **optimal** solution.
- ▶ Regarding those added variables:
 - ► They are **artificial variables** and have no physical meaning. They are created only for checking feasibility.
 - ▶ If a constraint already has a variable that can be included in a trivial basis, we do not need to add an artificial variable in that constraint.
 - ▶ This happens to those "≤" constraints (if the RHS is nonnegative).
- ► We then adjust the tableau according to the initial basis and continue applying the simplex method on the phase-II LP.

Example 1: Phase I

▶ Consider an LP

which has no trivial bfs (due to the " \geq " constraint).

▶ Its Phase-I standard form LP is

• We need only one artificial variable x_5 . x_3 and x_4 are slack variables.

Example 1: preparing the initial tableau

▶ Let's try to solve the Phase-I LP. First, let's prepare the initial tableau:

0	0	0	0	-1	0
2	1	-1	0	1	$x_5 = 6$
1	2	0	1	0	$x_4 = 6$

- ▶ Is this a valid tableau? No!
 - ▶ For all basic columns (in this case, columns 4 and 5), the 0th row should contain 0.
 - ► So we need to first **adjust the 0th row** with elementary row operations.

Example 1: preparing the initial tableau

▶ Let's adjust row 0 by adding row 1 to row 0.

0	0	0	0	-1	0	adjust	2	1	-1	0	0	6
2	1	-1	0	1	$x_5 = 6$	$\overbrace{\rightarrow}$	2	1	-1	0	1	$x_5 = 6$
1	2	0	1	0	$x_4 = 6$		1	2	0	1	0	$x_4 = 6$

- ▶ Now we have a valid initial tableau to start from!
- ▶ The current bfs is $x^0 = (0, 0, 0, 6, 6)$, which corresponds to an **infeasible** solution to the original LP.
 - We know this because there are positive artificial variables.

Example 1: solving the Phase-I LP

▶ Solving the Phase-I LP takes only one iteration:

2	1	-1	0	0	6		0	0	0	0	0
2	1	$^{-1}$	0	1	$x_5 = 6$	\rightarrow	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
1	2	0	1	0	$x_4 = 6$		0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_4 = 3$

- ▶ Whenever an artificial variable leaves the basis, we will not need to enter it again. Therefore, we may remove that column to save calculations.
- ▶ As we can remove all artificial variables, the original LP is feasible.
- A feasible basis for the original LP is $\{x_1, x_4\}$.

Example 1: solving the Phase-II LP

- ▶ Now let's construct the Phase-II LP.
- Step 1: put the original objective function "max $x_1 + x_2$ " back:

-1	-1	0	0	0
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_4 = 3$

- ▶ Is this a valid tableau? No!
 - Column 1, which should be basic, contains a nonzero number in the 0th row. It must be adjusted to 0.
- ▶ Before we run iterations, let's adjust the 0th row again.

Example 1: solving the Phase-II LP

▶ Let's fix the 0th row and then run two iterations.

	-1	-1	. 0	0	0	adiust	_	0	$-\frac{1}{2}$		$\frac{1}{2}$	0		3
_	1 0	$\frac{\frac{1}{2}}{\frac{3}{2}}$	$-\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ 0	$x_1 = 3$ $x_4 = 3$	\rightarrow		1 0	$\frac{\frac{1}{2}}{\frac{3}{2}}$		$\frac{1}{2}$	0 1	x_1 x_4	= 3 = 3
	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	4		0	1	0	1		6		
>	1	0	$-\frac{2}{3}$	$-\frac{1}{3}$	$x_1 = 2$	\rightarrow	1	2	0	1	x_1	1 =	6	
	0	1	$\frac{1}{3}$	$\frac{2}{3}$	$x_2 = 2$		0	3	1	2	x_3	3 =	6	

• The optimal bfs is (6, 0, 6, 0).

Example 1: visualization

- x⁰ is infeasible (the artificial variable x₅ is positive).
- x¹ is the initial bfs (as a result of Phase I).
- x³ is the optimal bfs (as a result of Phase II).

Example 2: Phase-I LP

▶ Consider another LP

and its Phase-I LP

▶ Please note that there are two artificial variables x_4 and x_5 (why?).

The Simplex Method (Part 2)

[•] How about x_3 ?

nformation	on	tableaus	
000000000	0		

Example 2: solving the Phase-I LP

▶ We first fix the 0th row and then run two iterations to remove all the artificial variables:

	0	0	0	$^{-1}$	-1	()	adjust	t .	3	3	$^{-1}$	0	0	12
	2	1	-1	1	0	x_4	= 6	$\overbrace{\rightarrow}$		2	1	-1	1	0	$x_4 = 6$
	1	2	0	0	1	x_5	= 6			1	2	0	0	1	$x_5 = 6$
										$x^0 =$	(0,	0, 0, 0	<u>6, 6</u>)	is ii	nfeasible
	0	$\frac{3}{2}$	$\frac{1}{2}$	0	3	8		0	0	0		0			
\rightarrow	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 =$	= 3	\rightarrow	1	0	$-\frac{2}{3}$	x_{1}	$_{1} = 2$	_		
	0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_5 =$	= 3		0	1	$\frac{1}{3}$	x_{2}	$_{2} = 2$			
	$x^1 =$	= (3	, 0, 0, 0	<u>), 3</u>) i	s infe	asib	le	$x^2 =$	= (2	2, 2, 0,	<u>, 0, 0</u>	<u>)</u>) is f	easi	ble	

Example 2: solving the Phase-II LP

▶ With the initial basis $\{x_1, x_2\}$, we then solve the Phase-II LP in one iteration (do not forget to fix the 0th row).²

	-1	-1	0	0	adjust	0	0	$-\frac{1}{3}$	4	
	1	0	$-\frac{2}{3}$	$x_1 = 2$	\overleftrightarrow	1	0	$-\frac{2}{3}$	$x_1 = 2$	
	0	1	$\frac{1}{3}$	$x_2 = 2$		0	1	$\frac{1}{3}$	$x_2 = 2$	
						$x^{2} =$	= (2	, 2, 0)	is not op	timal
	0 1	L 0	6							
Y	1 2	2 0	$x_1 =$	6						
	0 3	3 1	$x_3 =$	6						
	$x^3 =$	(6, 0,	6) is (optimal						

²Would you visualize the whole process by yourself?

Example 3: Phase-I LP

▶ Consider the LP

and its Phase-I LP

Example 3: solving the Phase-I LP

▶ After adjusting the 0th row, we run two iterations:

 $x^{0} = (0, 0, 4, 6)$ is infeasible $x^{1} = (0, 2, 0, 4)$ is infeasible $x^{2} = (0, 4, 0, 2)$ is infeasible

Example 3: solving the Phase-I LP

▶ The final tableau

-1	0	-1	0	2
2	1	1	0	$x_2 = 4$
-1	0	-1	1	$x_4 = 2$

is optimal (for the Phase-I LP).

- ▶ However, in the Phase-I optimal solution (0, 4, 0, 2), the artificial variable x_4 is still in the basis (and positive).
- ▶ Therefore, we conclude that the original LP is infeasible.³

The Simplex Method (Part 2)

³Try to visualize this!

Road map

- ▶ Information on tableaus.
- ▶ Finding an initial bfs.
- Degeneracy and efficiency.
- ▶ The matrix way of doing simplex.

Information on tableaus 0000000000	Finding an initial bfs 000000000000000000	Degeneracy and efficiency 00000000	The matrix way 0000000000

Degeneracy

- Recall that an LP is degenerate if multiple bases correspond to a single basic solution.
- ▶ As an example, consider the following LP

and its standard form

Information on tableaus 0000000000	Finding an initial bfs 000000000000000000000000000000000000	Degeneracy and efficiency 000000000	The matrix way

Degeneracy

 \blacktriangleright The six bases of

correspond to four distinct basic solutions.

Impact of degeneracy

- ▶ In a degenerate LP, multiple feasible bases correspond to the same bfs.
- ► For the simplex method, it is possible to move to **another** basis but still at the **same** bfs.
- Running an iteration may have no improvement!
- Let's run the simplex method on this example.

Information on tableaus 0000000000	Finding an initial bfs 000000000000000000000000000000000000	Degeneracy and efficiency 000000000	The matrix way 0000000000

Solving degenerate LPs

▶ After three iterations, we find an optimal solution:

-1 -3 0 0 0		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\rightarrow	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 0 -3 2 3		1 0 0 1 6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\rightarrow	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- ▶ In the second iteration, there is no improvement!
- ▶ The basis changes but the bfs does not change.

 \rightarrow

Efficiency of the simplex method

- ▶ In general, when we use the simplex method to solve a degenerate LP, there may be some iterations that have no improvements.
 - ► That may happen when multiple rows win the ratio test **at the same time**; those basic variables become 0 simultaneously.
- ▶ For some (very strange) instances, the simplex method needs to travel through all the bfs before it can make a conclusion.
- ▶ Therefore, the simplex method is an **exponential-time** algorithm.⁴
 - It may take an unacceptable long time to solve an LP.
- ▶ There are polynomial-time algorithms for Linear Programming.
 - ▶ For many practical problems, the simplex method is still faster.
- ▶ The simplex method is the most popular method for LP in industry.

⁴The number of iteration is $O(\binom{n}{m})$.

Information on tableaus 0000000000	Finding an initial bfs 000000000000000000000000000000000000	Degeneracy and efficiency 0000000000	The matrix way 000000000

Efficiency of the simplex method

- ▶ When using the simplex method to solve an (original) LP, the number of **functional constraints** (m) greatly affects the computation time.
 - The computation time is roughly $O(m^3)$: proportional to the **cube** of the number of functional constraints.
 - Intuition: Number of iterations is O(m) and number of operations in an iteration is $O(m^2)$.
- ▶ The number of variables, on the contrary, is not so important.
 - We calculate $x_B = A_B^{-1}b$ in each iteration, and $A_B \in \mathbb{R}^{m \times m}$.
- ▶ The **sparsity** of the coefficient matrix A is also important.
 - A is sparse means it has many zeros.
 - ▶ Practical problems typically have sparse coefficient matrices.
- ▶ For more information, see Chapters 5 and 7 (which will not be covered in this course).

Cycling

- One thing is even worse than running for a long time.
- ▶ At a degenerate bfs, the simplex method may enter an infinite loop! This is called **cycling**.
 - ▶ Basis $1 \rightarrow$ basis $2 \rightarrow$ basis $3 \rightarrow \cdots \rightarrow$ basis 1.
- ▶ This may happen when we use a "not so good" way of selecting entering and leaving variables.
 - ▶ If we select the nonbasic variable with the "most significant reduced cost", cycling may occur.
- ▶ There are at least two ways to avoid cycling:
 - ▶ Randomize the selection of variables.
 - Apply an **anti-cycling** variable selection rule.

The smallest index rule

▶ One anti-cycling rule is the smallest index rule:⁵

Proposition 2 (The smallest index rule)

Using the following rule guarantees to solve a minimization LP in finite steps:

- Among nonbasic variables with positive reduced costs, pick the one with the smallest index to enter the basis.
- Among basic variables that have the smallest valid ratios, pick the one with smallest index to exist.
- ▶ The smallest index rule may not generate the **least iterations** toward an optimal solution.
 - ▶ No variable selection rule can guarantee to be the most efficient!
- ▶ The smallest index rule can guarantee **no cycling**!

⁵Developed by Bland in 1977.

Road map

- ▶ Information on tableaus.
- Finding an initial bfs.
- ▶ Degeneracy and efficiency.
- ► The matrix way of doing simplex.

Implementation of the simplex method

- ▶ When one implements the simplex method with computer programs, using tableaus is not the most efficient way.
- ▶ Using **matrices** is the most efficient.
- ▶ Recall that the standard form LP can be expressed as

min
$$c_B^T A_B^{-1} b - (c_B^T A_B^{-1} A_N - c_N^T) x_N$$

s.t. $x_B = A_B^{-1} b - A_B^{-1} A_N x_N$
 $x_B, x_N \ge 0$

or

$$+ (c_B^T A_B^{-1} A_N - c_N^T) x_N = c_B^T A_B^{-1} b$$

$$I x_B + A_B^{-1} A_N x_N = A_B^{-1} b.$$

• We may do **matrix operations** to do iterations.

z

At any feasible basis

$$z + (c_B^T A_B^{-1} A_N - c_N) x_N = c_B^T A_B^{-1} b$$

$$I x_B + A_B^{-1} A_N x_N = A_B^{-1} b.$$

- At any feasible basis B:
 - The current bfs is $x = (x_B, x_N) = (A_B^{-1}b, 0)$ and the current $z = c_B^T A_B^{-1} b$.
- ▶ For the entering variable:
 - The reduced costs are $\bar{c}_N^T = c_B^T A_B^{-1} A_N c_N^T$.
 - The reduced cost of variable x_j is $\overline{c_j} = c_B^T A_B^{-1} A_j c_j$ for all $j \in N$.
 - If there exists $j \in N$ such that $\bar{c}_j > 0$, x_j may enter.
- ▶ For the leaving variable:
 - If x_j enters, the **ratio test** is to compare the ratios $\frac{(A_B^{-1}b)_i}{(A_D^{-1}A_A)_i}$.
 - The basic variable corresponding to row i may leave if $(A_B^{-1}A_j)_i > 0$ and

$$\frac{(A_B^{-1}b)_i}{(A_B^{-1}A_j)_i} \leq \frac{(A_B^{-1}b)_k}{(A_B^{-1}A_j)_k} \quad \forall k=1,...,m \text{ such that } (A_B^{-1}A_j)_k > 0.$$

When we stop

- At any optimal basis B, we know that
 - The reduced costs $\bar{c}_N^T = c_B^T A_B^{-1} A_N c_N^T \leq 0.$
 - The optimal bfs is $x^* = (x_B^*, x_N^*) = (A_B^{-1}b, 0).$
 - The current objective value is $z^* = c_B^T A_B^{-1} b$.
- ▶ To detect multiple optimal solutions:

•
$$\bar{c}_N^T = c_B^T A_B^{-1} A_N - c_N^T \le 0.$$

- There exists $j \in N$ such that $\bar{c}_j = 0$.
- ▶ To detect unboundedness:
 - There exists $j \in N$ such that $\bar{c}_j > 0$.
 - Moreover, $(A_B^{-1}A_j)_i \leq 0$ for all $i \in B$.

Information on tableaus	Finding an initial bfs	Degeneracy and efficiency	The matrix way 00000000000000000000000000000000000
0000000000	000000000000000000	000000000	

Example

▶ Consider the example again:

▶ In the matrix representation, we have

$$c^{T} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}$$

A feasible basis

• Given
$$x_B = (x_1, x_4, x_5)$$
 and $x_N = (x_2, x_3)$, we have

$$\begin{aligned} c_B^T &= \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}, \quad c_N^T &= \begin{bmatrix} 0 & 0 \end{bmatrix}, \\ A_B &= \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_N &= \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}. \end{aligned}$$

• Given the basis, we have

$$x_B = A_B^{-1}b = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4\\ 8\\ 3 \end{bmatrix} = \begin{bmatrix} 2\\ 4\\ 3 \end{bmatrix} = \begin{bmatrix} x_1\\ x_4\\ x_5 \end{bmatrix}, \text{ and}$$
$$z = c_B^T A_B^{-1}b = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2\\ 4\\ 3 \end{bmatrix} = -2.$$

• The current bfs is $x = (x_1, x_2, x_3, x_4, x_5) = (2, 0, 0, 4, 3).$

Information on tableaus 0000000000	Finding an initial bfs 0000000000000000000	Degeneracy and efficiency 000000000	The matrix way 00000000000000000000000000000000000

A feasible basis

• For $x_N = (x_2, x_3)$, the reduced costs are

$$\bar{c}_N^T = c_B^T A_B^{-1} A_N - c_N^T$$

$$= \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

• x_2 enters. For $x_B = (x_1, x_4, x_5)$, we have • $A_B^{-1}A_2 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 2 \\ 1 \end{bmatrix}$ and $A_B^{-1}b = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}$. • $\frac{4}{2} < \frac{3}{1}$, so x_4 leaves.

An optimal basis

• Given
$$x_B = (x_1, x_2, x_5)$$
 and $x_N = (x_3, x_4)$ we have

$$c_B^T = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}, \quad c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix},$$
$$A_B = \begin{bmatrix} 2 & -1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

▶ Given the basis, we have

$$x_{B} = A_{B}^{-1}b = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0\\ -\frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4\\ 8\\ 3 \end{bmatrix} = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} x_{1}\\ x_{2}\\ x_{5} \end{bmatrix}, \text{ and}$$
$$z = c_{B}^{T}A_{B}^{-1}b = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix} = -3.$$

• The current bfs is $x = (x_1, x_2, x_3, x_4, x_5) = (3, 2, 0, 0, 1).$

Information on tableaus	Finding an initial bfs	Degeneracy and efficiency	The matrix way 000000000
0000000000	000000000000000000	000000000	

An optimal basis

• For $x_N = (x_3, x_4)$, the reduced costs are

$$\bar{c}_N^T = c_B^T A_B^{-1} A_N - c_N^T$$

$$= \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}.$$

▶ No variable should enter: This bfs is optimal.

The matrix way

- ▶ In short, the simplex method may be run with matrix calculations.
- In this way, the bottleneck is the calculation of A_B^{-1} .
- ▶ Nevertheless, because the current basis B and the previous one have only **one variable** different, the current A_B and the previous one have only **one column** different.
 - Calculating A_B^{-1} can be faster with the previous one.⁶
- ▶ In fact, how do you know that A_B is still **invertible** after changing one column?

⁶Section 5.4 contains relevant discussion about calculating A_B^{-1} .