Operations Research

Applications of Linear Programming

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Road map

- Materials blending.
- Linearizing maximum/minimum functions.
- AMPL.

Material blending

- In some situations, we need to determine not only products to produce but also materials to input. ${ }^{1}$
- This is because we have some flexibility in making the products.
- For example, in making orange juice, we may use orange, sugar, water, etc. Different ways of blending these materials results in different qualities of juice.
- The goal is to save money (lower the proportion of expensive materials) while maintaining quality.

[^0]
Material blending: the problem

- We blend materials 1, 2, and 3 to make products 1 and 2 .
- The quality of a product, which depends on the proportions of these three materials, must meet the standard:
- Product 1: at least 40% of material 1; at least 20% of material 2.
- Product 2: at least 50% of material 1; at most 30% of material 3 .
- At most 100 kg of product 1 and 150 kg of product 2 can be sold.
- Prices for products 1 and 2 are $\$ 10$ and $\$ 15$ per kg, respectively.
- Costs for materials 1 to 3 are $\$ 8, \$ 4$, and $\$ 3$ per kg , respectively.
- Amount of a product made equals the amount of materials input.
- We want to maximize the total profit.

Formulation: decision variables

- Probably our first attempt is to define the following: Let

$$
\begin{aligned}
& x_{1}=\mathrm{kg} \text { of product } 1 \text { produced, } \\
& x_{2}=\mathrm{kg} \text { of product } 2 \text { produced, } \\
& y_{1}=\mathrm{kg} \text { of material } 1 \text { purchased, } \\
& y_{2}=\mathrm{kg} \text { of material } 2 \text { purchased, and } \\
& y_{3}=\mathrm{kg} \text { of material } 3 \text { purchased. }
\end{aligned}
$$

- May we express the quality of each product? No!
- We need to specify the amount of material 1 used for product 1 , the amount of material 1 used for product 2, etc.
- So we need to redefine our decision variables.

Formulation: decision variables

- How about this: Let

$$
\begin{aligned}
& x_{1}=\mathrm{kg} \text { of material } 1 \text { used for product } 1, \\
& x_{2}=\mathrm{kg} \text { of material } 1 \text { used for product } 2, \\
& x_{3}=\mathrm{kg} \text { of material } 2 \text { used for product } 1, \\
& x_{4}=\mathrm{kg} \text { of material } 2 \text { used for product } 2, \\
& x_{5}=\mathrm{kg} \text { of material } 3 \text { used for product } 1, \text { and } \\
& x_{6}=\mathrm{kg} \text { of material } 3 \text { used for product } 2 .
\end{aligned}
$$

- The definition is correct and precise, but not easy to use.
- Similar to computer programming: give your variables reasonable names that allow people to know what they are.

Formulation: decision variables

- A more intuitive way of naming variables: Let

$$
\begin{aligned}
& x_{11}=\mathrm{kg} \text { of material } 1 \text { used for product } 1, \\
& x_{12}=\mathrm{kg} \text { of material } 1 \text { used for product } 2, \\
& x_{21}=\mathrm{kg} \text { of material } 2 \text { used for product } 1, \\
& x_{22}=\mathrm{kg} \text { of material } 2 \text { used for product } 2, \\
& x_{31}=\mathrm{kg} \text { of material } 3 \text { used for product } 1, \text { and } \\
& x_{32}=\mathrm{kg} \text { of material } 3 \text { used for product } 2 .
\end{aligned}
$$

- Or in a compact format:

$$
x_{i j}=\mathrm{kg} \text { of material } i \text { used for product } j, i=1, \ldots, 3, j=1,2 .
$$

Formulation: objective function

- Let's write down the total profit.
- Sales revenues depend on the amount of products we sell.
- How many kg of product 1 may we sell? $x_{11}+x_{21}+x_{31} \mathrm{~kg}$.
- Similarly, we have $x_{12}+x_{22}+x_{32} \mathrm{~kg}$ of product 2 .
- Material costs depend on the amount of materials we purchase.
- Similarly, we need to buy $x_{11}+x_{12} \mathrm{~kg}$ of material $1, x_{21}+x_{22} \mathrm{~kg}$ of material 2 and $x_{31}+x_{32} \mathrm{~kg}$ of material 3 .
- The objective function is

$$
\begin{aligned}
\max & 10\left(x_{11}+x_{21}+x_{31}\right)+15\left(x_{12}+x_{22}+x_{32}\right) \\
& -8\left(x_{11}+x_{12}\right)-4\left(x_{21}+x_{22}\right)-3\left(x_{31}+x_{32}\right) \\
=\max & 2 x_{11}+7 x_{12}+6 x_{21}+11 x_{22}+7 x_{31}+12 x_{32}
\end{aligned}
$$

Formulation: quality constraints

- To guarantee that at least 40% of product 1 are made by material 1 ?

$$
\frac{x_{11}}{x_{11}+x_{21}+x_{31}} \geq 0.4
$$

- It is conceptually correct. However, it is nonlinear!
- Let's fix the nonlinearity by moving the denominator to the RHS:

$$
x_{11} \geq 0.4\left(x_{11}+x_{21}+x_{31}\right) .
$$

Though equivalent, they are just different.

- We may (but are not required to) choose other format, such as

$$
0.6 x_{11}-0.4 x_{21}-0.4 x_{31} \geq 0 \quad \text { or } \quad 3 x_{11}-2 x_{21}-2 x_{31} \geq 0 .
$$

Formulation: constraints

- In total we have four quality constraints:
- $x_{11} \geq 0.4\left(x_{11}+x_{21}+x_{31}\right)$.
- $x_{21} \geq 0.2\left(x_{11}+x_{21}+x_{31}\right)$.
- $x_{12} \geq 0.5\left(x_{12}+x_{22}+x_{32}\right)$.
- $x_{13} \leq 0.3\left(x_{12}+x_{22}+x_{32}\right)$.
- The demands are limited:

$$
x_{11}+x_{21}+x_{31} \leq 100 \quad \text { and } \quad x_{12}+x_{22}+x_{32} \leq 150
$$

- The quantities are nonnegative:

$$
x_{i j} \geq 0 \quad \forall i=1, \ldots, 3, j=1,2 .
$$

Formulation: the complete formulation

- The complete formulation is

$$
\begin{array}{ll}
\max & 10\left(x_{11}+x_{21}+x_{31}\right)+15\left(x_{12}+x_{22}+x_{32}\right) \\
& -8\left(x_{11}+x_{12}\right)-4\left(x_{21}+x_{22}\right)-3\left(x_{31}+x_{32}\right) \\
\text { s.t. } & x_{11} \geq 0.4\left(x_{11}+x_{21}+x_{31}\right), \quad x_{21} \geq 0.2\left(x_{11}+x_{21}+x_{31}\right), \\
& x_{12} \geq 0.5\left(x_{12}+x_{22}+x_{32}\right) \quad x_{13} \leq 0.3\left(x_{12}+x_{22}+x_{32}\right) \\
& x_{11}+x_{21}+x_{31} \leq 100, \quad x_{12}+x_{22}+x_{32} \leq 150 \\
& x_{i j} \geq 0 \quad \forall i=1, \ldots, 3, j=1,2
\end{array}
$$

- Some remarks:
- We may need to redefine decision variables when it is necessary.
- We may from time to time use multi-dimensional variables.
- We need to linearize nonlinear constraints or objective functions, even if they look so similar.

Road map

- Materials blending.
- Linearizing maximum/minimum functions.
- AMPL.

Fair allocation: the problem

- Suppose that we want to allocate $\$ 1000$ to two persons in a fair way.
- We adopt the following measurement of fairness: The smaller the difference between the two amounts, the fairer the allocation is.
- Obviously the answer is to give each person $\$ 500$.
- May we formulate a linear program to solve this problem?

Fair allocation: the first attempt

- Let x_{i} be the amount allocated to person $i, i=1,2$.
- Is the following formulation correct?

$$
\begin{array}{cl}
\min & x_{2}-x_{1} \\
\mathrm{s.t.} & x_{1}+x_{2}=1000 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

Fair allocation: the second attempt

- Let x_{i} be the amount allocated to person $i, i=1,2$.
- The following formulation is correct:

$$
\begin{aligned}
\min & \left|x_{2}-x_{1}\right| \\
\text { s.t. } & x_{1}+x_{2}=1000 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- However, the absolute function $|\cdot|$ is nonlinear!
- It is possible to linearize this problem as a linear program?

Linearizing the second attempt

- First, let w be the absolute difference: $w=\left|x_{2}-x_{1}\right|$:

$$
\begin{array}{cl}
\min & w \\
\mathrm{s.t.} & x_{1}+x_{2}=1000 \\
& w=\left|x_{2}-x_{1}\right| \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

- We may change this equality constraint to an inequality:

$$
\begin{array}{cl}
\min & w \\
\mathrm{s.t.} & x_{1}+x_{2}=1000 \\
& w \geq\left|x_{2}-x_{1}\right| \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

Why?

Linearizing the second attempt

- Now, notice that $\left|x_{2}-x_{1}\right|=\max \left\{x_{2}-x_{1}, x_{1}-x_{2}\right\}$ and

$$
w \geq \max \left\{x_{2}-x_{1}, x_{1}-x_{2}\right\} \quad \Leftrightarrow \quad w \geq x_{2}-x_{1} \text { and } w \geq x_{1}-x_{2} .
$$

- Therefore, the linear program we want is

$$
\begin{array}{cl}
\min & w \\
\text { s.t. } & x_{1}+x_{2}=1000 \\
& w \geq x_{2}-x_{1} \\
& w \geq x_{1}-x_{2} \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

- May we solve this LP and get the $(500,500)$ allocation?

Solving the linear program

- Consider the LP

$$
\begin{array}{cl}
\min & w \\
\mathrm{s.t.} & x_{1}+x_{2}=1000 \\
& w \geq x_{2}-x_{1} \\
& w \geq x_{1}-x_{2} \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

- The equality constraint means that $x_{2}=1000-x_{1}$:

$$
\begin{array}{cl}
\min & w \\
\mathrm{s.t.} & w \geq 1000-2 x_{1} \\
& w \geq 2 x_{1}-1000 \\
& x_{1} \geq 0
\end{array}
$$

- Would you graphically solve the LP?

Linearizing constraints

- The technique we just applied can be generalized.
- When a maximum function is at the smaller side of an inequality:

$$
y \geq \max \left\{x_{1}, x_{2}\right\} \quad \Leftrightarrow \quad y \geq x_{1} \text { and } y \geq x_{2}
$$

- y, x_{1}, and x_{2} can be variables, parameters, or a function of them:

$$
\begin{aligned}
& y+x_{1}+3 \geq \max \left\{x_{1}-x_{3}, 2 x_{2}+4\right\} \\
\Leftrightarrow & y+x_{1}+3 \geq x_{1}-x_{3} \text { and } y+x_{1}+3 \geq 2 x_{2}+4 .
\end{aligned}
$$

- There may be more than two terms in the maximum function:

$$
y \geq \max _{i=1, \ldots, n}\left\{x_{i}\right\} \quad \Leftrightarrow \quad y \geq x_{i} \quad \forall i=1, \ldots, n
$$

Linearizing constraints

- A minimum function at the larger side can also be linearized.

$$
\begin{aligned}
& y+x_{1} \leq \min \left\{x_{1}-x_{3}, 2 x_{2}+4,0\right\} \\
\Leftrightarrow \quad & y+x_{1} \leq x_{1}-x_{3}, y+x_{1} \leq 2 x_{2}+4, \text { and } y+x_{1} \leq 0 .
\end{aligned}
$$

- This technique does not apply to:
- A maximum function at the larger side: $y \leq \max \left\{x_{1}, x_{2}\right\}$ is not equivalent to $y \leq x_{1}$ and $y \leq x_{2}$.
- A minimum function at the smaller side: $y \geq \min \left\{x_{1}, x_{2}\right\}$ is not equivalent to $y \geq x_{1}$ and $y \geq x_{2}$.
- A maximum or minimum function in an equality.

Linearizing constraints

- A minimum function at the larger side can also be linearized.

$$
\begin{aligned}
& y+x_{1} \leq \min \left\{x_{1}-x_{3}, 2 x_{2}+4,0\right\} \\
\Leftrightarrow \quad & y+x_{1} \leq x_{1}-x_{3}, y+x_{1} \leq 2 x_{2}+4, \text { and } y+x_{1} \leq 0 .
\end{aligned}
$$

- This technique does not apply to:
- A maximum function at the larger side: $y \leq \max \left\{x_{1}, x_{2}\right\}$ is not equivalent to $y \leq x_{1}$ and $y \leq x_{2}$.
- A minimum function at the smaller side: $y \geq \min \left\{x_{1}, x_{2}\right\}$ is not equivalent to $y \geq x_{1}$ and $y \geq x_{2}$.
- A maximum or minimum function in an equality.

Linearizing the objective function

- When we minimize a maximum function:

$$
\min \max \left\{x_{1}, x_{2}\right\} \quad \Leftrightarrow \quad \text { min } \quad w,
$$

- x_{1} and x_{2} can be variables, parameters, or a function of them.
- There may be other constraints.
- The objective function may contain other terms.
- Similarly, when we maximize a minimum function:

$$
\begin{array}{cl}
\max & w+x_{4} \\
\mathrm{s.t.} & w \leq x_{1} \\
& w \leq x_{2} \\
& w \leq 2 x_{3}+5 \\
& 2 x_{1}+x_{2}-x_{4} \leq x_{3}
\end{array}
$$

Linearizing the objective function

- This technique does not apply to:
- Maximizing a maximum function.
- Minimizing a minimum function.
- Finally, an absolute function is just a maximum function:

$$
|x|=\max \{x,-x\}
$$

- Minimizing an absolute function can be linearized.
- An absolute function at the smaller side of an inequality can be linearized.

Road map

- Materials blending.
- Linearizing maximum/minimum functions.
- AMPL.

AMPL

- AMPL means "A Modeling Language for Mathematical Programming."
- AMPL is an interface, and CPLEX is a solver.

To obtain AMPL

- Office website: http://ampl.com/.
- To download a size-limited student version: http://ampl.com/try-ampl/download-a-demo-version/.
- A typical package includes the components:
- ampl: The console environment.
- cplex: A solver for linear (fractional or integer) programs.
- minos: A solver for nonlinear (fractional) programs.
- sw: A more user-friendly console environment (MS Windows only) for "scrolling windows."
- In this course, we use the licensed full education version.

The first example

- Consider our favorite LP

$$
\begin{aligned}
z^{*}=\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 6 \\
& 2 x_{1}+x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- An optimal solution is $x^{*}=(2,2)$. The associated $z^{*}=6$.

The first example

- To use AMPL to solve this LP, all we need is a model file:

```
var x1;
var x2;
maximize profit: x1 + x2;
subject to resource_1: x1 + 2 * x2 <= 6;
subject to resource_2: 2 * x1 + x2 <= 6;
subject to nonneg_1: x1 >= 0;
subject to nonneg_2: x2 >= 0;
```

- Let's put these codes into a plain text file called "eg1.mod" and save this file in a "program" (or other name you prefer) folder.
- Let's try it first and explain the codes later.

The first example

Put your＂eg1．mod＂in the ＂program＂folder．

13．program
－amplexe
\square ampl．lic
［is）amplcplex122．pdf
［怨 ${ }_{6}$ ampl－minos．pdf
（3）ampltabl＿64．dll
（\＃）conopt．exe
［G）conopt3．pdf
$\square \mathrm{cp} . \mathrm{ampl}$
（3）cp＿64．dll
－1］cplex．exe

Open the console environment sw （or ampl in Mac）．

README．snopt．txtreadme．sw
README．xpress．txt
ज़⿵人一⿵冂卄snopt．exesw．exe
（3）vcomp100．dllxpauth．xprxpress．exexprl．dllxprs．dll

The first example

- Type the following instructions one by one:
ampl
option solver cplex; model program/eg1.mod; solve;
- An optimal solution is found!
- With the solver CPLEX.
- The objective value of the optimal solution is 4 .
File Edit Help
File Edit Help
sw: ampl
ampl: option soluer cplex;
ampl: model program/eg1.mod;
ampl: solve;
CPLEX 12.6.1.0: optimal solution; objective 4
2 dual simplex iterations (1 in phase I)
ampl: |
1

The first example

- To see the optimal solution, type
display x1, x2;
- The values are displayed.
- $x^{*}=(2,2)$.

The first example: codes revisited

- Let's explain the codes in the model file.

```
var x1; # use "var" to declare variables
var x2; # each AMPL statement ends with a semicolon
maximize profit: x1 + x2; # name your objective function
subject to resource_1: x1 + 2 * x2 <= 6; # name each constraint
subject to resource_2: 2 * x1 + x2 <= 6;
subject to nonneg_1: x1 >= 0;
subject to nonneg_2: x2 >= 0;
```

- Reserved words: var, maximize, minimize, and subject to.
- Give all constraints and the objective function distinct names.
- Do not forget colons and semicolons.
- Use \# to write comments.

The first example: make modifications

- Let's modify the code (and save the modified file):

```
subject to resource_1: x1 + 3 * x2 <= 6;
```

- Go back to the console and type
reset;
model program/eg1.mod;
solve;
display x1, x2;
See how the optimal solution changes. Do not forget to reset!
- Remarks:
- The file can be names with any extension file name as long as it is a plain-text file.
- Be aware of the file path.
- In Mac, use absolute file paths.

The second example

- Three products, four markets, different production costs and retail prices Find the production and sales plan to maximize profit.

Product	Market				
	1	2	3	4	
	Capacity				
1	$\$ 20 / \$ 30$	$\$ 40 / \$ 45$	$\$ 15 / \$ 30$	$\$ 30 / \$ 40$	500
2	$\$ 30 / \$ 35$	$\$ 25 / \$ 30$	$\$ 15 / \$ 35$	$\$ 20 / \$ 30$	600
3	$\$ 25 / \$ 40$	$\$ 35 / \$ 40$	$\$ 10 / \$ 20$	$\$ 25 / \$ 30$	400

The mathematical model

- Variables: Let
$x_{i j}=$ sales quantity of product i at market $j, i=1, \ldots, 3, j=1, \ldots, 4$.
- Parameters: We denote the unit cost and price of product i at market j as $C_{i j}$ and $P_{i j}$, respectively, and the capacity for product i as K_{i}.
- The mathematical model (an LP):

$$
\begin{array}{ll}
\max & \sum_{i=1}^{3} \sum_{j=1}^{4}\left(P_{i j}-C_{i j}\right) x_{i j} \\
\text { s.t. } & \sum_{j=1}^{4} x_{i j} \leq K_{i} \quad \forall i=1, \ldots, 3 \\
& x_{i j} \geq 0 \quad \forall i=1, \ldots, 3, j=1, \ldots, 4
\end{array}
$$

Decoupling the data from a model

- To make our AMPL programs flexible and extandable, we should decouple the data from a model.
- To do this, we will prepare a model file and a data file.
- The model file contains a conceptual model.
- The data file contains the instance parameters.
- They should both be stored as plain-text files. The extension name does not matter.
- Be aware of file paths.
- Name them as "eg2.mod" and "eg2.dat" and store them in the "program" folder.

The model file

```
param P;
param M;
param Capacity{i in 1..P};
param Cost{i in 1..P, j in 1..M};
param Price{i in 1..P, j in 1..M};
var x{i in 1..P, j in 1..M};
maximize profit:
    sum{i in 1..P, j in 1..M} (Price[i, j] - Cost[i, j]) * x[i, j];
subject to productCapacity{i in 1..P}: # constraint indices
    sum{j in 1..M} x[i, j] <= Capacity[i];
subject to nonnegX{i in 1..P, j in 1..M}:
    x[i, j] >= 0;
```


The data file

```
param P := 3;
param M := 4;
param Capacity :=
    1500
    2600
    3 400;
param Price:}\begin{array}{rrrrrr}{1}&{2}&{3}&{4}\\{1}&{30}&{45}&{30}&{40}
    2 35 30 35 30
    34040 20 30;
```

param Cost: | | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: |$:=$

- The format does not matter.
- Reserved words: param.
- Parameter names must be consistent with those defined in the model file.
- Array and matrix lengths must be consistent with their limits.
- Be aware of those : =, ; , and : and the timing of using them.

Solving the second example

- Solve the second example by loading the model and data files.

```
reset;
model program/eg2.mod;
data program/eg2.dat;
solve;
display x;
```

- Do not forget to reset!

Some remarks

- The default solver in AMPL is MINOS.
- You may choose to use MINOS by typing option solver minos.
- MINOS can also solve LP.
- CPLEX uses simplex-based methods while MINOS uses interior search methods (not covered in this course).
- For solving LPs, CPLEX performs better.
- MINOS cannot solve integer programs; CPLEX can.
- AMPL is case-sensitive.
- Try the AMPL instructions show; and expand; at home.
- Use exit; to exit the AMPL environment.
- The official AMPL book is freely available on the official website.

[^0]: ${ }^{1}$ This example comes from Chapter 3 of Operations Research: Applications and Algorithms by Wayne L. Winston, 4th edition.

