# Operations Research, Spring 2015 Pre-lecture Problems for Lecture 10 

Instructor: Ling-Chieh Kung<br>Department of Information Management National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:10am, May 21, 2015. Please submit a hard copy of your work in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 point) A firm constantly sells a product to one downstream retailer. The demand rate is 1000 units per month, the unit production cost is $\$ 10$, the production rate is 3000 units per month, the setup cost is $\$ 1000$ per production run, the holding cost is $\$ h$ per unit per month.
(a) Find the EOQ as a function of $h$.
(b) Is the EOQ increasing in $h$, decreasing in $h$, or neither? Mathematically prove it and intuitively explain it.
2. (0 point) A retailer sells bananas to consumers in a market. Everyday she places an order to a supplier, who will deliver the ordered bananas to the retailer at 6 am in the next morning. That is the only chance to order in a day. The unit purchasing cost is $\$ 12$ and the unit retail price is $\$ 20$. Bananas unsold until 6 pm will all be sold at a discounted price $\$ 5$ at the end of each day. The daily consumer demand follows a uniform distribution between 20 and 100.
(a) Find the newsvendor quantity
(b) Suppose that the supplier now charges the retailer a $\$ 100$ shipping cost per delivery. Does that change your answer in Part (a)? Mathematically prove it and intuitively explain it.
3. (10 point) Consider the typical EOQ problem

$$
\min _{q \geq 0} \frac{D K}{q}+\frac{q h}{2}
$$

where $D$ is the annual demand, $K$ is the ordering cost per order, $h$ is the holding cost per unit per year, and $q$ is the ordering quantity. As we discussed in the lecture videos, this is a convex program.
(a) (3 points) Suppose that the supplier now requires the quantity of each order to be within $q_{L}$ and $q_{H}$, where $q_{L}<q_{H}$. Formulate the new program and show that it is still a convex program.
(b) (7 points) Analytically solve the new program to find the cost-minimizing order quantity. Depending on the relationship among the parameters, the optimal order quantity may be $q_{L}$, $q_{H}$, or something in between. Explicitly write down the conditions for the optimal quantity to fall in the three categories.

