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1. (a) We number city 1-4 Taipei, Kaohsiung, Taoyuan, Hsinchu and assume month 0 be the begin-
ning of month 1.

Let the parameters be

Dij = the demands for air conditioners of month j at city i, i = 1, ..., 4, j = 1, ..., 6,

Cij = the shipping cost from city j to city i, i = 1, 2, j = 3, 4.

Let the decision variables be

pij = production quantity of month j in city i, i = 3, 4, j = 1, ..., 6,

hij = the amount of air coditioners of month j shipping from Hsinchu to city i, i = 1, 2, j = 1, ..., 6,

tij = the amount of air coditioners of month j shipping from Taoyuan to city i, i = 1, 2, j = 1, ..., 6,

xij = ending inventory of month j at city i, i = 3, 4, j = 0, ..., 6.

min

6∑
j=1

(400p3j + 350p4j +

2∑
i=1

Ci3hij +

2∑
i=1

Ci4tij + 80

4∑
i=3

xij)

s.t. x30 = 1000

x3j−1 + p3j −
2∑

i=1

hij = x3j ∀j = 1, ..., 6

x40 = 0

x4j−1 + p4j −
2∑

i=1

tij = x4j ∀j = 1, ..., 6

hij + tij = Dij ∀i = 1, 2, j = 1, ...6

2p3j ≤ 4000 ∀j = 1, ..., 6

2.5p4j ≤ 4000 ∀j = 1, ..., 6

pij ≥ 0 ∀i = 3, 4, j = 1, ..., 6

hij ≥ 0, tij ≥ 0 ∀i = 1, 2, j = 1, ..., 6

xij ≥ 0 ∀i = 3, 4, j = 0, ..., 6.

(b) The setting is the same as 1.(a)
Let the parameters be

Dij = the demands for air conditioners of month j at city i, i = 1, ..., 4, j = 1, ..., 6,

Cij = the shipping cost from city j to city i, i = 1, 2, j = 3, 4.

Let the decision variables be

sij = sales quantity of month j in city i, i = 3, 4, j = 1, ...6,

pij = production quantity of month j in city i, i = 3, 4, j = 1, ..., 6,

hij = the amount of air coditioners of month j shipping from Hsinchu to city i, i = 1, 2, j = 1, ..., 6,

tij = the amount of air coditioners of month j shipping from Taoyuan to city i, i = 1, 2, j = 1, ..., 6,

xij = ending inventory of month j at city i, i = 3, 4, j = 0, ..., 6.
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min

6∑
j=1

(600

4∑
i=3

sij − 400p3j − 350p4j −
2∑

i=1

Ci3hij −
2∑

i=1

Ci4tij − 80

4∑
i=3

xij)

s.t. x30 = 1000

x3j−1 + p3j −
2∑

i=1

hij = x3j ∀j = 1, ..., 6

x40 = 0

x4j−1 + p4j −
2∑

i=1

tij = x4j ∀j = 1, ..., 6

hij + tij = sij ∀i = 1, 2, j = 1, ...6

sij ≤ Dij ∀i = 1, 2, j = 1, ...6

2p3j ≤ 4000 ∀j = 1, ..., 6

2.5p4j ≤ 4000 ∀j = 1, ..., 6

pij ≥ 0 ∀i = 3, 4, j = 1, ..., 6

sij ≥ 0, hij ≥ 0, tij ≥ 0 ∀i = 1, 2, j = 1, ..., 6

xij ≥ 0 ∀i = 3, 4, j = 0, ..., 6.

2. (a) The feasible region and isoquant line are illustrated in Figure 1. It is clear that we should
push the isoquant line until we stop at the extreme point (6, 2), which is an optimal solution.

Figure 1: Graphical solution for Problem 2a

(b) The standard form is

max 2x1 − 2x3 + x2

s.t. x1 − x3 − x2 + x4 = 4

x1 − x3 + x2 + x5 = 8

xi ≥ 0 ∀i = 1, ..., 5.

Since in the standard form we have five variables and two constraints, there should be two
basic variables and three nonbasic variables in a basic solution. The ten possible ways to
choose three (nonbasic) variables to be 0 are listed in the table below.
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x1 x2 x3 x4 x5 basis Basic feasible solution?

6 2 0 0 0 {x1, x2} Yes

– 0 – 0 0 {x1, x3} No

8 0 0 -4 0 {x1, x4} No

4 0 0 0 4 {x1, x5} Yes

0 2 -6 0 0 {x2, x3} No

0 8 0 12 0 {x2, x4} Yes

0 -4 0 0 12 {x2, x5} No

0 0 -8 -4 0 {x3, x4} No

0 0 -4 0 4 {x3, x5} No

0 0 0 4 8 {x4, x5} Yes

(c) The initial tableau is

−2 −1 2 0 0 0

1 −1 −1 1 0 x4 = 4

1 1 −1 0 1 x5 = 8

We use smallest index rule and run four iterations to get

−2 −1 2 0 0 0

1 −1 −1 1 0 x4 = 4

1 1 −1 0 1 x5 = 8

→

0 −3 0 2 0 8

1 −1 −1 1 0 x1 = 4

0 2 0 −1 1 x5 = 4

→

0 0 0 1
2

3
2 14

1 0 −1 1
2

1
2 x1 = 6

0 1 0 − 1
2

1
2 x2 = 2

an optimal solution to the original LP is (x∗1, x
∗
2) = (6, 2) with objective value z∗ = 14.

(d) The original LP becomes

max x1 − x3 + 2x2

s.t. x1 − x3 − x2 + x4 = 4

2x1 − x3 + x2 + x5 = 8

xi ≥ 0 ∀i = 1, ..., 5.

The initial tableau is

−1 −2 1 0 0 0

1 −1 −1 1 0 x4 = 4

1 1 −1 0 1 x5 = 8

We use smallest index rule and run four iterations.
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−1 −2 1 0 0 0

1 −1 −1 1 0 x4 = 4

1 1 −1 0 1 x5 = 8

→

0 −3 0 1 0 4

1 −1 −1 1 0 x1 = 4

0 2 0 −1 1 x5 = 4

→

0 0 0 − 1
2

3
2 10

1 0 −1 1
2

1
2 x1 = 6

0 1 0 − 1
2

1
2 x2 = 2

→

1 0 −1 0 2 16

2 0 −2 1 1 x1 = 12

1 1 −1 0 1 x2 = 8

We can notice that x3 is the only variable with negative coefficient in 1st row while its
coefficient are all negative in other rows. It means that the constraint is unbounded, so we
can’t find the objective value in this modified LP.

3. (a) The standard form LP is

max 3x1 + 2x2 + x3

s.t. x1 + x2 + x4 = 4

x1 + 2x2 + 3x3 + x5 = 9

x3 − x6 = 3

xi ≥ 0 ∀i = 1, ..., 6.

We need to use two-phase implementation.

i. The Phase-I standard form LP is

min x7

s.t. x1 + x2 + x4 = 4

x1 + 2x2 + 3x3 + x5 = 9

x3 − x6 + x7 = 3

xi ≥ 0 ∀i = 1, ..., 7.

First, solve the Phase-I LP with smallest index rule which tries to minimize x7.

0 0 0 0 0 0 −1 0

1 1 0 1 0 0 0 x4 = 4

1 2 3 0 1 0 0 x5 = 9

0 0 1 0 0 −1 1 x7 = 3

adjust︷︸︸︷→
0 0 1 0 0 −1 0 3

1 1 0 1 0 0 0 x4 = 4

1 2 3 0 1 0 0 x5 = 9

0 0 1 0 0 −1 1 x7 = 3

→

− 1
3 − 2

3 0 0 − 1
3 −1 0 0

1 1 0 1 0 0 0 x4 = 4
1
3

2
3 1 0 1

3 0 0 x3 = 3

− 1
3 − 2

3 0 0 − 1
3 −1 1 x7 = 0

ii. According to the phase I, we get a feasible solution x′ = (0, 0, 3, 4, 0, 0, 0). We can know
that there are multiple solutions. Before doing phase II, we should let x7 leave basis.
Here, we choose x6 to be entering variable and make an adjustment.

− 1
3 − 2

3 0 0 − 1
3 −1 0 0

1 1 0 1 0 0 0 x4 = 4
1
3

2
3 1 0 1

3 0 0 x3 = 3

− 1
3 − 2

3 0 0 − 1
3 −1 1 x7 = 0

adjust︷︸︸︷→
0 0 0 0 0 0 0

1 1 0 1 0 0 x4 = 4
1
3

2
3 1 0 1

3 0 x3 = 3
1
3

2
3 0 0 1

3 1 x6 = 0
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Then, solve the Phase-II LP.We use smallest index rule and run four iterations to get

−3 −2 −1 0 0 0 0

1 1 0 1 0 0 x4 = 4
1
3

2
3 1 0 1

3 0 x3 = 3
1
3

2
3 0 0 1

3 1 x6 = 0

adjust︷︸︸︷→
− 8

3 − 4
3 0 0 1

3 0 3

1 1 0 1 0 0 x4 = 4
1
3

2
3 1 0 1

3 0 x3 = 3

1
3

2
3 0 0 1

3 1 x6 = 0

→

0 4 0 0 3 8 3

0 −1 0 1 −1 −3 x4 = 4

0 0 1 0 0 −1 x3 = 3

1 2 0 0 1 3 x1 = 0

an optimal solution to the LP is (x∗1, x
∗
2, x
∗
3) = (0, 0, 3) with objective value z∗ = 3. There

isn’t any iteration that has no improvement.

4. (a) The feasible region and isoquant line are illustrated in Figure 2. It is clear that we should
push the isoquant line until we stop at the extreme point (4, 6), which is an optimal solution.
The optimal value is 22.

Figure 2: Graphical solution for Problem 4a

(b) The standard form is

max x1 + 3x2

s.t. − x1 + x2 + x3 = 3

− x1 + 2x2 + x4 = 8

3x1 + x2 + x5 = 18

xi ≥ 0 ∀i = 1, ..., 5.

The initial tableau is

−1 −3 0 0 0 0

−1 1 1 0 0 x3 = 3

−1 2 0 1 0 x4 = 8

3 1 0 0 1 x5 = 18

We use “highest-magnitude reduced cost rule” and run four iterations.
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−1 −3 0 0 0 0

−1 1 1 0 0 x3 = 3

−1 2 0 1 0 x4 = 8

3 1 0 0 1 x5 = 18

→

−4 0 3 0 0 9

−1 1 1 0 0 x2 = 3

1 0 −2 1 0 x4 = 2

4 0 −1 0 1 x5 = 15

→

0 0 −5 4 0 17

0 1 −1 1 0 x2 = 5

1 0 −2 1 0 x1 = 2

0 0 7 −4 1 x5 = 7

→

0 0 0 8
7

5
7 22

0 1 0 3
7

1
7 x2 = 6

1 0 0 − 1
7

2
7 x1 = 4

0 0 1 − 4
7

1
7 x3 = 1

an optimal solution to the LP is (x∗1, x
∗
2) = (4, 6) with objective value z∗ = 22. There isn’t

any iteration that has no improvement.

(c) The initial tableau is

−1 −3 0 0 0 0

−1 1 1 0 0 x3 = 3

−1 2 0 1 0 x4 = 8

3 1 0 0 1 x5 = 18

We use smallest index rule and run three iterations.

−1 −3 0 0 0 0

−1 1 1 0 0 x3 = 3

−1 2 0 1 0 x4 = 8

3 1 0 0 1 x5 = 18

→

0 − 8
3 0 0 1

3 6

0 4
3 1 0 1

3 x3 = 9

0 7
3 0 1 1

3 x4 = 14

1 1
3 0 0 1

3 x1 = 6

→

0 0 0 8
7

5
7 22

0 0 1 − 4
7

1
7 x3 = 1

0 1 0 3
7

1
7 x2 = 6

1 0 0 − 1
7

2
7 x1 = 4

an optimal solution to the LP is (x∗1, x
∗
2) = (4, 6) with objective value z∗ = 22. There isn’t

any iteration that has no improvement.

(d) We may think “highest-magnitude reduced cost” rule may have less iterations than smallest
index rule, but we can know that it is not always true by Part (b) and (c).

5. The standard form is

max x1 + 3x2

s.t. − x1 + x2 + x3 = 3

− x1 + 2x2 + x4 = 8

3x1 + x2 + x5 = 18

xi ≥ 0 ∀i = 1, ..., 5.

(a)

AB =

 1 0 0
2 1 0
1 0 1

 AN =

 −1 1
−1 0
3 0

 cB =

 3
0
0

 cN =

[
1
0

]
b =

 3
8
18


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(b) The reduced costs are

c−TN = cTBA
−1
B AN − cTN =

[
3 0 0

]  1 0 0
−2 1 0
−1 0 1

 −1 1
−1 0
3 0

− [ 1 0
]

=
[

3 0 0
]  −1 1

0 −2
4 0

− [ 1 0
]

=
[
−3 3

]
−
[

1 0
]

=
[
−4 3

]
→ We choose x1 to enter because its reduced cost is the most negative among the nonbasic
varibales.
→ xj = x1.

(c)

A−1B b =

 1 0 0
−2 1 0
−1 0 1

 3
8
18

 =

 3
2
15



A−1B A1 =

 1 0 0
−2 1 0
−1 0 1

 −1
−1
3

 =

 −1
1
4



→ ratio test:

 x2

x4

x5

 =


3
−1
2
1

15
4


→ x4 leaves.

(d) According (b) and (c), we now change our basis B = (x1, x2, x5). Then,

AB =

 −1 1 0
−1 2 0
3 1 1

 AN =

 1 0
0 1
0 0

 cB =

 1
3
0

 cN =

[
0
0

]
b =

 3
8
18


We first find the entering variable as what we did in (b). The reduced costs are

c−TN = cTBA
−1
B AN − cTN =

[
1 3 0

]  −2 1 0
−1 1 0
7 −4 1

 1 0
0 1
0 0

− [ 0 0
]

=
[

1 3 0
]  −2 1
−1 1
7 −4

− [ 0 0
]

=
[
−5 4

]
−
[

0 0
]

=
[
−5 4

]
→ We choose x3 to enter because its reduced cost is the most negative among the nonbasic
varibales.
→ xj = x3.
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Then, find the leaving variable as what we did in(c).

A−1B b =

 −2 1 0
−1 1 0
7 −4 1

 3
8
18

 =

 2
5
7



A−1B A3 =

 −2 1 0
−1 1 0
7 −4 1

 1
0
0

 =

 −2
−1
7



→ ratio test:

 x1

x2

x5

 =


2
−2
5
−1
7
7


→ x5 leaves.

The next basis B becomes (x1, x2, x3).

8


