Operations Research, Spring 2016 Suggested Solution for Pre-lecture Problems for Lecture 2

Solution providers: Kiwi Liu and Johnny Chen
Department of Information Management National Taiwan University

1. The graphic solution is shown in Figure 1. We may push the indifference line and find out the optimal solution $\left(x_{1}, x_{2}\right)=(16,0)$.

Figure 1: Graphical solution for Problem 1

Figure 2: Graphical solution for Problem 3
2. Let x_{1} and x_{2} be the numbers of tables and chairs produced, respectively. The problem can then be formulated as

$$
\begin{aligned}
\max & 100 x_{1}+30 x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 12 \\
& \frac{5}{4} x_{1}+\frac{10}{3} x_{2} \leq 16 \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{aligned}
$$

3. (a) Let x_{1} and x_{2} be the numbers of tables and chairs produced, respectively. The problem can then be formulated as

$$
\begin{aligned}
\max & 120 x_{1}+80 x_{2}-30\left(3 x_{1}+2 x_{2}\right) \\
\text { s.t. } & 3 x_{1}+2 x_{2} \leq 10 \\
& \frac{1}{0.5} x_{1}+x_{2} \leq 12 \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{aligned}
$$

(b) The graphical solution is shown in Figure 2. Since the objective function is parallel with the constraint $3 x_{1}+2 x_{2} \leq 10$, there are multiple optimal solutions to the LP on the line segment. Two optimal solutions, e.g., are $\left(x_{1}, x_{2}\right)=\{(0,5),(2,2)\}$. Therefore, we suggest Tom to produce either 0 table and 5 chairs or 2 tables and 2 chairs per day.

