Operations Research, Spring 2016 Suggested Solution for Pre-lecture Problems for Lecture 3

Solution providers: Kiwi Liu and Johnny Chen Department of Information Management National Taiwan University

1. (a) The standard form is

$$\begin{array}{ll} \max & 5x_1 + 3x_2 \\ \text{s.t.} & x_1 + x_2 + x_3 = 16 \\ & x_1 + 4x_2 + x_4 = 20 \\ & x_2 + x_5 = 8 \\ & x_i \geq 0 \quad \forall i = 1, ..., 5. \end{array}$$

(b) Since in the standard form we have five variables and three constraints, there should be three basic variables and two nonbasic variables in a basic solution. The ten possible ways to choose two (nonbasic) variables to be 0 are listed in the table below. The basic feasible solutions are $(\frac{44}{3}, \frac{4}{3}, 0, 0, \frac{20}{3})$, (16, 0, 0, 4, 8), (0, 5, 11, 0, 3), and (0, 0, 16, 20, 8).

x_1	x_2	x_3	x_4	x_5	basis
-12	8	20	0	0	$\{x_1, x_2, x_3\}$
8	8	0	-20	0	$\{x_1, x_2, x_4\}$
$\frac{44}{3}$	$\frac{4}{3}$	0	0	$\frac{20}{3}$	$\{x_1, x_2, x_5\}$
N/A	Õ	N/A	N/A	0	$\{x_1, x_3, x_4\}$
20	0	-4	0	8	$\{x_1, x_3, x_5\}$
16	0	0	4	8	$\{x_1, x_4, x_5\}$
0	8	8	-12	0	$\{x_2, x_3, x_4\}$
0	5	11	0	3	$\{x_2, x_3, x_5\}$
0	16	0	-44	-8	$\{x_2, x_4, x_5\}$
0	0	16	20	8	$\{x_3, x_4, x_5\}$

(c) The one-to-one mapping between bfs and extreme points is shown in Figure 1.

Figure 1: Graphical solution for Problem 1c

2. The initial tableau is

-5	-3	0	0	0	0
1	1	1	1	0	$x_3 = 16$
1	4	0	0	1	$x_4 = 20$
0	1	0	0	1	$x_5 = 8$

We run two iterations to get

-5	-3	0	0	0	0		0	2	5	0	0	80
1	1	1	1	0	$x_3 = 16$		1	1	1	0	0	$x_1 = 16$
1	4	0	0	1	$x_4 = 20$	-7	0	3	-1	1	0	$x_4 = 4$
0	1	0	0	1	$x_5 = 8$		0	1	0	0	1	$x_5 = 8$

An optimal solution to the original LP is $(x_1^*, x_2^*) = (16, 0)$ with objective value $z^* = 80$.

3. (a) Let x_1 and x_2 be the number of tables and chairs produced, respectively. The standard form is

max
$$120x_1 + 80x_2 - 30(3x_1 + 2x_2)$$

s.t. $3x_1 + 2x_2 + x_3 = 10$
 $\frac{1}{0.5}x_1 + x_2 + x_4 = 12$
 $x_i \ge 0 \quad \forall i = 1, ..., 4.$

The bfs are as below:

x_1	x_2	x_3	x_4	basis
$\frac{10}{3}$	0	0	$\frac{16}{3}$	$\{x_1, x_4\}$
0	5	0	7	$\{x_2, x_4\}$
0	0	10	12	$\{x_3, x_4\}$

(b) The initial tableau is

We run two iterations to get

An optimal solution to the original LP is $(x_1^*, x_2^*) = (\frac{10}{3}, 0)$ with objective value $z^* = 100$.