Operations Research, Spring 2016 Suggested Solution for Pre-lecture Problems for Lecture 4

Solution providers: Kiwi Liu and Johnny Chen
Department of Information Management National Taiwan University

1. (a) Its standard form is

$$
\begin{aligned}
& \min 5 x_{1}+3 x_{2} \\
& \text { s.t. } x_{1}-4 x_{2}+x_{3}=4 \\
& x_{1}+x_{4}=8 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 4 . \\
& \rightarrow \begin{array}{cccc|c}
-5 & -3 & 0 & 0 & 0 \\
\hline \begin{array}{cccc}
1 & -4 & 1 & 0
\end{array} & x_{3}=4 \\
1 & 0 & 0 & 1 & x_{4}=8
\end{array} \quad \rightarrow \begin{array}{cccc|c}
0 & -23 & 5 & 0 & 20 \\
\hline \begin{array}{ccccccc}
0 & -4 & 1 & 0 & x_{3}=4 \\
0 & 0 & -\frac{4}{3} & \frac{23}{4} & 43 \\
0 & 0 & 4 & -1 & 1 & x_{4}=4 \\
\hline 1 & 0 & 0 & 1 & x_{1}=8 \\
0 & 1 & -\frac{1}{4} & \frac{1}{4} & x_{2}=1
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Since there is no positive denominators in the ratio test, this LP is unbounded.
(b)

-5	-3	0	0	0
1	-4	1	0	$x_{3}=4$
1	0	0	1	$x_{4}=8$

Since there is no positive denominators in the ratio test, this LP is unbounded.
(c) The search routes of the two above solution processes is shown in Figure 1.

Figure 1: Search routes for Problem 1
2. (a) Its standard form is

$$
\begin{array}{rrllll}
\max & 5 x_{1} & +3 x_{2} \\
\text { s.t. } & x_{1} & +x_{2}+x_{3} & & & =12 \\
& x_{1} & +4 x_{2} & +x_{4} & & =20 \\
& & x_{2} & & & \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{array}
$$

(b) Its Phase-I LP is

$$
\begin{aligned}
& x_{i} \geq 0 \quad \forall i=1, \ldots, 6 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \left.\left.\begin{array}{cccccc|cc}
0 & 0 & 0 & 0 & 0 & -1 & 0 \\
\hline 1 & 1 & 1 & 0 & 0 & 0 & x_{3}=12 \\
1 & 4 & 0 & 1 & 0 & 0 & x_{4}=20 \\
0 & 1 & 0 & 0 & -1 & 1 & x_{6}=8
\end{array} \quad \stackrel{\sim}{\rightarrow} \quad \begin{array}{cccccc|c}
\text { adjust }
\end{array} \begin{array}{cccccc}
0 & 1 & 0 & 0 & -1 & 0
\end{array} \right\rvert\, \begin{array}{c}
1 \\
\hline 1
\end{array}\right) \\
& \rightarrow \begin{array}{cccccc|c}
-\frac{1}{4} & 0 & 0 & -\frac{1}{4} & -1 & 0 & 3 \\
\hline \frac{3}{4} & 0 & 1 & -\frac{1}{4} & 0 & 0 & x_{3}=7 \\
\frac{1}{4} & 1 & 0 & \frac{1}{4} & 0 & 0 & x_{2}=8 \\
-\frac{1}{4} & 0 & 0 & -\frac{1}{4} & -1 & 1 & x_{6}=3
\end{array}
\end{aligned}
$$

In the Phase-I optimal solution $(0,8,7,0,0,3)$, the artificial variable x_{6} is still in the basis and positive. Therefore, we conclude that the original LP is infeasible.
3. (a) Its Phase-I LP is

We found a feasible solution $(0,8,4,12,0)$.
(b)

$$
\begin{aligned}
& \left.\begin{array}{ccccc|cc}
-5 & -3 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 0 & 1 & x_{3}=4 \\
0 & 1 & 0 & 0 & -1 & x_{2}=8 \\
-1 & 0 & 0 & 1 & -4 & x_{4}=12
\end{array} \quad \stackrel{\sim}{\rightarrow} \quad \begin{array}{ccccc|c}
\text { adjust }
\end{array} \begin{array}{ccccc}
-5 & 0 & 0 & 0 & -3
\end{array}\right] 24 \\
& \rightarrow \begin{array}{ccccc|c}
0 & 0 & 5 & 0 & 2 & 44 \\
\hline 1 & 0 & 1 & 0 & 1 & x_{1}=4 \\
0 & 1 & 0 & 0 & -1 & x_{2}=8 \\
0 & 0 & 1 & 1 & -3 & x_{4}=16
\end{array}
\end{aligned}
$$

We found bfs $x^{*}=(4,8,0,16,0)$.

