Operations Research, Spring 2016 Suggested Solution for Pre-lecture Problems for Lecture 4

Solution providers: Kiwi Liu and Johnny Chen Department of Information Management National Taiwan University

1. (a) Its standard form is

 \rightarrow

-5		-3	0	0	0		0	-23	5	0	20
1		-4	1	0	$x_3 = 4$	\rightarrow	1	-4	1	0	$x_3 = 4$
1		0	0	1	$x_4 = 8$		0	4	-1	1	$x_4 = 4$
0	0	$-\frac{4}{3}$	2	$\frac{23}{4}$	43						
1	0	0		1	$x_1 = 8$						
0	1	$-\frac{1}{4}$		$\frac{1}{4}$	$x_2 = 1$						

Since there is no positive denominators in the ratio test, this LP is unbounded. (b)

-5	-3	0	0	0
1	-4	1	0	$x_3 = 4$
1	0	0	1	$x_4 = 8$

Since there is no positive denominators in the ratio test, this LP is unbounded.

(c) The search routes of the two above solution processes is shown in Figure 1.

Figure 1: Search routes for Problem 1

2. (a) Its standard form is

(b) Its Phase-I LP is

(c)

In the Phase-I optimal solution (0, 8, 7, 0, 0, 3), the artificial variable x_6 is still in the basis and positive. Therefore, we conclude that the original LP is infeasible.

3. (a) Its Phase-I LP is

	0	0	0	() (0	-1	-1		0		_	1	5	0	-1	-1	0	0	28	
-	1	1	1	() (0	0	0	x_3	= 12	$\stackrel{\rm adjust}{\longrightarrow}$		1	1	1	0	0	0	0	$x_3 = 1$	12
	1	4	0	_	-1 (0	1	0	x_6	= 20			1	4	0	-1	0	1	0	$x_6 = 1$	20
	0	1	0	() –	-1	0	1	$ x_7 $	= 8			0	1	0	0	-1	0	1	$x_7 =$	8
	0	4		-1	-1	_	1 (0 0	1	16		0	0	$\frac{1}{3}$		$\frac{1}{3}$	-1	0	<u>1</u>	$\frac{6}{3}$	
\rightarrow	1 0	1]	1 -1	$0 \\ -1$	C) () 1	0 0	$x_1 = x_6$	= 12 = 8	\rightarrow	$\begin{array}{c} 1 \\ 0 \end{array}$	0 1	$\frac{4}{3}$		$\frac{1}{3}$ - $\frac{1}{3}$	0 0	0 0	$x_1 = x_2$	$= \frac{28}{3}$ $= \frac{8}{3}$	
	0	1		0	0	—	1 () 1	x_7	= 8		0	0	$\frac{1}{3}$		$\frac{1}{3}$	-1	$1 \mid$	<i>x</i> ₇ =	$=\frac{16}{3}$	
_		$\frac{1}{4}$	0	0	$\frac{1}{4}$	-1	0		}		0	0	0	0	0		0				
\rightarrow	$\frac{3}{4}$		0	1	$\frac{1}{4}$	0	0	x_3	= 7	\rightarrow	1	0	1	0	1	x_3	$_{3} = 4$				
	$\frac{1}{4}$		1	0	$-\frac{1}{4}$	0	0	x_2	=5		0	1	0	0	-1		2 = 8				
		$\frac{1}{4}$	0	0	$\frac{1}{4}$	-1	1	x_7	= 3		-1	0	0	1	-4	x_4	= 12	2			

We found a feasible solution (0, 8, 4, 12, 0).

(b)

	-5	-3	0	0	0	0		-5	0	0	0	-3	24	
	1	0	1	0	1	$x_3 = 4$	$\stackrel{\rm adjust}{\longleftrightarrow}$	1	0	1	0	1	$x_3 = 4$	
	0	1	0	0	-1	$x_2 = 8$		0	1	0	0	-1	$x_2 = 8$	
	-1	0	0	1	-4	$x_4 = 12$		-1	0	0	1	-4	$x_4 = 12$	
	0 0	5	0	2		44								
\rightarrow	1 0	1	0	1	x_1	$_{1} = 4$								
	0 1	0	0	-1	$ x_2 $	$_{2} = 8$								
	0 0	1	1	-3	$ x_4 $	= 16								

We found bfs $x^* = (4, 8, 0, 16, 0).$