Operations Research

Applications of Linear Programming

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Materials blending.
- ▶ Linearizing maximum/minimum functions.
- ► AMPL.

Material blending

- ► In some situations, we need to determine not only products to produce but also **materials** to input.¹
- ▶ This is because we have some **flexibility** in making the products.
- ▶ For example, in making orange juice, we may use orange, sugar, water, etc. Different ways of **blending** these materials results in different qualities of juice.
- ► The goal is to save money (lower the proportion of expensive materials) while maintaining quality.

¹This example comes from Chapter 3 of *Operations Research: Applications and Algorithms* by Wayne L. Winston, 4th edition.

Material blending: the problem

- ▶ We blend materials 1, 2, and 3 to make products 1 and 2.
- ▶ The quality of a product, which depends on the proportions of these three materials, must meet the standard:
 - ▶ Product 1: at least 40% of material 1; at least 20% of material 2.
 - ▶ Product 2: at least 50% of material 1; at most 30% of material 3.
- ▶ At most 100 kg of product 1 and 150 kg of product 2 can be sold.
- ▶ Prices for products 1 and 2 are \$10 and \$15 per kg, respectively.
- ▶ Costs for materials 1 to 3 are \$8, \$4, and \$3 per kg, respectively.
- ▶ Amount of a product made equals the amount of materials input.
- ▶ We want to maximize the total profit.

Formulation: decision variables

▶ Probably our first attempt is to define the following: Let

```
x_1 = \text{kg of product 1 produced},

x_2 = \text{kg of product 2 produced},

y_1 = \text{kg of material 1 purchased},

y_2 = \text{kg of material 2 purchased}, and

y_3 = \text{kg of material 3 purchased}.
```

- ▶ May we express the quality of each product? No!
- ▶ We need to specify the amount of material 1 used for product 1, the amount of material 1 used for product 2, etc.
- ▶ So we need to **redefine** our decision variables.

Formulation: decision variables

► How about this: Let

```
x_1 = \text{kg} of material 1 used for product 1,

x_2 = \text{kg} of material 1 used for product 2,

x_3 = \text{kg} of material 2 used for product 1,

x_4 = \text{kg} of material 2 used for product 2,

x_5 = \text{kg} of material 3 used for product 1, and

x_6 = \text{kg} of material 3 used for product 2.
```

- ▶ The definition is correct and precise, but **not easy to use**.
 - Similar to computer programming: give your variables reasonable names that allow people to know what they are.

Formulation: decision variables

▶ A more intuitive way of naming variables: Let

```
x_{11} = \text{kg} of material 1 used for product 1,

x_{12} = \text{kg} of material 1 used for product 2,

x_{21} = \text{kg} of material 2 used for product 1,

x_{22} = \text{kg} of material 2 used for product 2,

x_{31} = \text{kg} of material 3 used for product 1, and

x_{32} = \text{kg} of material 3 used for product 2.
```

▶ Or in a compact format:

$$x_{ij} = \text{kg of material } i \text{ used for product } j, i = 1, ..., 3, j = 1, 2.$$

Formulation: objective function

- ▶ Let's write down the total profit.
- ▶ Sales revenues depend on the amount of products we sell.
 - ▶ How many kg of product 1 may we sell? $x_{11} + x_{21} + x_{31}$ kg.
 - ▶ Similarly, we have $x_{12} + x_{22} + x_{32}$ kg of product 2.
- ▶ Material costs depend on the amount of materials we purchase.
 - ▶ Similarly, we need to buy $x_{11} + x_{12}$ kg of material 1, $x_{21} + x_{22}$ kg of material 2 and $x_{31} + x_{32}$ kg of material 3.
- ► The objective function is

$$\max 10(x_{11} + x_{21} + x_{31}) + 15(x_{12} + x_{22} + x_{32}) - 8(x_{11} + x_{12}) - 4(x_{21} + x_{22}) - 3(x_{31} + x_{32}) = \max 2x_{11} + 7x_{12} + 6x_{21} + 11x_{22} + 7x_{31} + 12x_{32}.$$

Formulation: quality constraints

▶ To guarantee that at least 40% of product 1 are made by material 1?

$$\frac{x_{11}}{x_{11} + x_{21} + x_{31}} \ge 0.4.$$

- ▶ It is conceptually correct. However, it is **nonlinear!**
- Let's fix the nonlinearity by moving the denominator to the RHS:

$$x_{11} \ge 0.4(x_{11} + x_{21} + x_{31}).$$

Though equivalent, they are just different.

▶ We may (but are not required to) choose other format, such as

$$0.6x_{11} - 0.4x_{21} - 0.4x_{31} \ge 0$$
 or $3x_{11} - 2x_{21} - 2x_{31} \ge 0$.

Formulation: constraints

- ▶ In total we have four quality constraints:
 - $x_{11} \ge 0.4(x_{11} + x_{21} + x_{31}).$
 - $x_{21} \ge 0.2(x_{11} + x_{21} + x_{31}).$
 - $x_{12} \ge 0.5(x_{12} + x_{22} + x_{32}).$
 - $x_{13} \le 0.3(x_{12} + x_{22} + x_{32}).$
- ▶ The demands are limited:

$$x_{11} + x_{21} + x_{31} \le 100$$
 and $x_{12} + x_{22} + x_{32} \le 150$.

▶ The quantities are nonnegative:

$$x_{ij} \ge 0 \quad \forall i = 1, ..., 3, j = 1, 2.$$

Formulation: the complete formulation

▶ The complete formulation is

$$\max \quad 10(x_{11} + x_{21} + x_{31}) + 15(x_{12} + x_{22} + x_{32}) \\ -8(x_{11} + x_{12}) - 4(x_{21} + x_{22}) - 3(x_{31} + x_{32})$$
s.t.
$$x_{11} \ge 0.4(x_{11} + x_{21} + x_{31}), \quad x_{21} \ge 0.2(x_{11} + x_{21} + x_{31}),$$

$$x_{12} \ge 0.5(x_{12} + x_{22} + x_{32}) \quad x_{13} \le 0.3(x_{12} + x_{22} + x_{32})$$

$$x_{11} + x_{21} + x_{31} \le 100, \quad x_{12} + x_{22} + x_{32} \le 150$$

$$x_{ij} \ge 0 \quad \forall i = 1, ..., 3, j = 1, 2.$$

- ► Some remarks:
 - We may need to redefine decision variables when it is necessary.
 - ▶ We may from time to time use multi-dimensional variables.
 - We need to linearize nonlinear constraints or objective functions, even if they look so similar.

Road map

- ► Materials blending.
- ▶ Linearizing maximum/minimum functions.
- ► AMPL.

Fair allocation: the problem

- ▶ Suppose that we want to allocate \$1000 to two persons in a **fair** way.
- ▶ We adopt the following measurement of fairness: The smaller the difference between the two amounts, the fairer the allocation is.
- ▶ Obviously the answer is to give each person \$500.
- ▶ May we formulate a linear program to solve this problem?

Fair allocation: the first attempt

- ▶ Let x_i be the amount allocated to person i, i = 1, 2.
- ▶ Is the following formulation correct?

min
$$x_2 - x_1$$

s.t. $x_1 + x_2 = 1000$
 $x_i \ge 0 \quad \forall i = 1, 2.$

Fair allocation: the second attempt

- Let x_i be the amount allocated to person i, i = 1, 2.
- ▶ The following formulation is correct:

min
$$|x_2 - x_1|$$

s.t. $x_1 + x_2 = 1000$
 $x_i \ge 0 \quad \forall i = 1, 2.$

- \blacktriangleright However, the absolute function $|\cdot|$ is **nonlinear!**
- ▶ It is possible to linearize this problem as a linear program?

Linearizing the second attempt

▶ First, let w be the absolute difference: $w = |x_2 - x_1|$:

min
$$w$$

s.t. $x_1 + x_2 = 1000$
 $w = |x_2 - x_1|$
 $x_i \ge 0 \quad \forall i = 1, 2.$

▶ We may change this equality constraint to an inequality:

min
$$w$$

s.t. $x_1 + x_2 = 1000$
 $w \ge |x_2 - x_1|$
 $x_i \ge 0 \quad \forall i = 1, 2.$

Why?

Linearizing the second attempt

Now, notice that $|x_2 - x_1| = \max\{x_2 - x_1, x_1 - x_2\}$ and

$$w \ge \max\{x_2 - x_1, x_1 - x_2\}$$
 \Leftrightarrow $w \ge x_2 - x_1 \text{ and } w \ge x_1 - x_2.$

▶ Therefore, the linear program we want is

$$\begin{array}{ll} \min & w \\ \text{s.t.} & x_1 + x_2 = 1000 \\ & w \geq x_2 - x_1 \\ & w \geq x_1 - x_2 \\ & x_i \geq 0 \quad \forall i = 1, 2. \end{array}$$

▶ May we solve this LP and get the (500, 500) allocation?

Solving the linear program

► Consider the LP

min
$$w$$

s.t. $x_1 + x_2 = 1000$
 $w \ge x_2 - x_1$
 $w \ge x_1 - x_2$
 $x_i \ge 0 \quad \forall i = 1, 2.$

▶ The equality constraint means that $x_2 = 1000 - x_1$:

min
$$w$$

s.t. $w \ge 1000 - 2x_1$
 $w \ge 2x_1 - 1000$
 $x_1 \ge 0$.

▶ Would you graphically solve the LP?

Linearizing constraints

- ▶ The technique we just applied can be generalized.
- ▶ When a **maximum** function is at the **smaller** side of an inequality:

$$y \ge \max\{x_1, x_2\} \quad \Leftrightarrow \quad y \ge x_1 \text{ and } y \ge x_2.$$

 \triangleright y, x_1 , and x_2 can be variables, parameters, or a function of them:

$$y + x_1 + 3 \ge \max\{x_1 - x_3, 2x_2 + 4\}$$

$$\Leftrightarrow y + x_1 + 3 \ge x_1 - x_3 \text{ and } y + x_1 + 3 \ge 2x_2 + 4.$$

▶ There may be more than two terms in the maximum function:

$$y \ge \max_{i=1,\dots,n} \{x_i\} \quad \Leftrightarrow \quad y \ge x_i \quad \forall i = 1,\dots,n.$$

Linearizing constraints

▶ A **minimum** function at the **larger** side can also be linearized.

$$y + x_1 \le \min\{x_1 - x_3, 2x_2 + 4, 0\}$$

 $\Leftrightarrow y + x_1 \le x_1 - x_3, y + x_1 \le 2x_2 + 4, \text{ and } y + x_1 \le 0.$

- ► This technique does not apply to:
 - A maximum function at the larger side: $y \le \max\{x_1, x_2\}$ is not equivalent to $y \le x_1$ and $y \le x_2$.
 - A minimum function at the smaller side: $y \ge \min\{x_1, x_2\}$ is not equivalent to $y \ge x_1$ and $y \ge x_2$.
 - ▶ A maximum or minimum function in an equality.

Linearizing constraints

▶ A **minimum** function at the **larger** side can also be linearized.

$$y + x_1 \le \min\{x_1 - x_3, 2x_2 + 4, 0\}$$

 $\Leftrightarrow y + x_1 \le x_1 - x_3, y + x_1 \le 2x_2 + 4, \text{ and } y + x_1 \le 0.$

- ► This technique does not apply to:
 - A maximum function at the larger side: $y \le \max\{x_1, x_2\}$ is not equivalent to $y \le x_1$ and $y \le x_2$.
 - A minimum function at the smaller side: $y \ge \min\{x_1, x_2\}$ is not equivalent to $y \ge x_1$ and $y \ge x_2$.
 - ▶ A maximum or minimum function in an equality.

Linearizing the objective function

▶ When we minimize a maximum function:

$$\min \max\{x_1, x_2\} \quad \Leftrightarrow \quad \begin{array}{l} \min \quad w \\ \text{s.t.} \quad w \ge x_1 \\ w \ge x_2. \end{array}$$

- \triangleright x_1 and x_2 can be variables, parameters, or a function of them.
- ▶ There may be other constraints.
- ► The objective function may contain other terms.
- ► Similarly, when we **maximize a minimum function**:

$$\max_{\text{s.t.}} \min\{x_1, x_2, 2x_3 + 5\} + x_4 \\ \text{s.t.} \quad 2x_1 + x_2 - x_4 \le x_3. \qquad \Leftrightarrow \qquad \max_{\text{s.t.}} \begin{array}{l} w + x_4 \\ \text{s.t.} \quad w \le x_1 \\ w \le x_2 \\ w \le 2x_3 + 5 \\ 2x_1 + x_2 - x_4 \le x_3. \end{array}$$

Linearizing the objective function

- ► This technique does not apply to:
 - Maximizing a maximum function.
 - ▶ Minimizing a minimum function.
- ► Finally, an **absolute function** is just a maximum function:

$$|x| = \max\{x, -x\}.$$

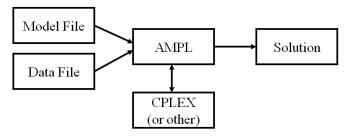
- Minimizing an absolute function can be linearized.
- An absolute function at the smaller side of an inequality can be linearized.

Road map

- ▶ Materials blending.
- ▶ Linearizing maximum/minimum functions.
- ► AMPL.

AMPL

- ► AMPL = "A Modeling Language for Mathematical Programming."
- ▶ AMPL is an interface, and **CPLEX** is a solver.



To obtain AMPL

- ▶ Office website: http://ampl.com/.
- ► To download a size-limited student version: http://ampl.com/try-ampl/download-a-free-demo/.
- ▶ A typical package includes the components:
 - ▶ ampl: The console environment.
 - ▶ cplex: A solver for linear (fractional or integer) programs.
 - ▶ minos: A solver for nonlinear (fractional) programs.
 - sw: A more user-friendly console environment (MS Windows only) for "scrolling windows."
- ▶ In this course, we use the licensed full education version.

► Consider our favorite LP

$$z^* = \max x_1 + x_2$$

s.t. $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 6$
 $x_i \ge 0 \quad \forall i = 1, 2.$

▶ An optimal solution is $x^* = (2, 2)$. The associated $z^* = 4$.

▶ To use AMPL to solve this LP, all we need is a **model file**:

```
var x1;
var x2;

maximize profit: x1 + x2;

subject to resource_1: x1 + 2 * x2 <= 6;
subject to resource_2: 2 * x1 + x2 <= 6;
subject to nonneg_1: x1 >= 0;
subject to nonneg_2: x2 >= 0;
```

- ▶ Let's put these codes into a plain text file called "eg1.mod" and save this file in a "program" (or other name you prefer) folder.
- ▶ Let's try it first and explain the codes later.

Put your "eg1.mod" in the "program" folder.



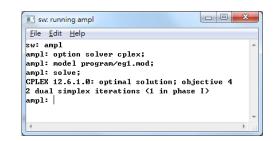
Open the console environment sw (or ampl in Mac).

README.snopt.txt
readme.sw
README.xpress.txt
sndoc7.pdf
snopt.exe
sw.exe
xpauth.xpr
xpress.exe
xprl.dll
a vors dll

➤ Type the following instructions one by one:

```
ampl
option solver cplex;
model program/eg1.mod;
solve;
```

- ► An optimal solution is found!
 - ▶ With the solver CPLEX.
 - ► The objective value of the optimal solution is 4.



➤ To see the optimal solution, type

```
display x1, x2;
```

- ► The values are displayed.
 - $x^* = (2, 2).$

```
File Edit Help

sw: ampl
ampl: option solver cplex;
ampl: model program/eg1.mod;
ampl: solve;
CPLEX 12.6.1.0: optimal solution; objective 4
2 dual simplex iterations (1 in phase I)
ampl: display x1, x2;
x1 = 2
x2 = 2

ampl:
```

The first example: codes revisited

▶ Let's explain the codes in the model file.

```
var x1; # use "var" to declare variables
var x2; # each AMPL statement ends with a semicolon
maximize profit: x1 + x2; # name your objective function
subject to resource_1: x1 + 2 * x2 <= 6; # name each constraint
subject to resource_2: 2 * x1 + x2 <= 6;
subject to nonneg_1: x1 >= 0;
subject to nonneg_2: x2 >= 0;
```

- ▶ Reserved words: var, maximize, minimize, and subject to.
- ► Give all constraints and the objective function **distinct names**.
- ► Do not forget colons and semicolons.
- ▶ Use # to write **comments**.

The first example: make modifications

▶ Let's modify the code (and save the modified file):

```
subject to resource_1: x1 + 3 * x2 \le 6;
```

▶ Go back to the console and type

```
reset;
model program/eg1.mod;
solve;
display x1, x2;
```

See how the optimal solution changes. Do not forget to **reset!**

- ▶ Remarks:
 - The file can be names with any extension file name as long as it is a plain-text file.
 - ▶ Be aware of the file path.
 - ▶ In Mac, use **absolute file paths** (for loading a file or a solver).

The second example

▶ Three products, four markets, different production costs and retail prices Find the production and sales plan to maximize profit.

Product	Market				- Capacity
1 Toduct	1	2	3	4	Capacity
1	\$20 / \$30	\$40 / \$45	\$15 / \$30	\$30 / \$40	500
2	\$30 / \$35	\$25 / \$30	\$15 / \$35	\$20 / \$30	600
3	\$25 / \$40	\$35 / \$40	\$10 / \$20	\$25 / \$30	400

The mathematical model

▶ Variables: Let

$$x_{ij}$$
 = sales quantity of product i at market $j, i = 1, ..., 3, j = 1, ..., 4$.

- ▶ Parameters: We denote the unit cost and price of product i at market j as C_{ij} and P_{ij} , respectively, and the capacity for product i as K_i .
- ▶ The mathematical model (an LP):

$$\max \sum_{i=1}^{3} \sum_{j=1}^{4} (P_{ij} - C_{ij}) x_{ij}$$
s.t.
$$\sum_{j=1}^{4} x_{ij} \le K_i \quad \forall i = 1, ..., 3$$

$$x_{ij} \ge 0 \quad \forall i = 1, ..., 3, j = 1, ..., 4.$$

Decoupling the data from a model

- ► To make our AMPL programs flexible and extandable, we should **decouple** the data from a model.
- ► To do this, we will prepare a **model file** and a **data file**.
 - ▶ The model file contains a conceptual model.
 - ▶ The data file contains the instance parameters.
- ▶ They should both be stored as plain-text files. The extension name does not matter.
- ▶ Be aware of file paths.
 - ▶ Name them as "eg2.mod" and "eg2.dat" and store them in the "program" folder.

The model file

```
param P;
                                          # number of product
param M;
                                          # number of market.
param Capacity{i in 1..P};
                                          # the capacity vector
param Cost{i in 1..P, j in 1..M};
                                          # the cost matrix
param Price{i in 1..P, j in 1..M};
                                          # the price matrix
var x{i in 1..P, j in 1..M};
maximize profit:
                                          # use "sum" for summation
  sum{i in 1..P, j in 1..M} (Price[i, j] - Cost[i, j]) * x[i, j];
subject to productCapacity{i in 1..P}: # constraint indices
  sum\{j in 1..M\} x[i, j] \leftarrow Capacity[i];
subject to nonnegX{i in 1..P, j in 1..M}:
 x[i, j] >= 0;
```

The data file

```
param P := 3;
param M := 4;

param Capacity :=
    1 500
    2 600
    3 400;
```

```
param Cost: 1 2 3 4:
1 20 40 15 30
2 30 25 15 20
3 25 35 10 25;
```

```
param Price: 1 2 3 4 := 1 30 45 30 40 2 35 30 35 30
```

3 40 40 20 30;

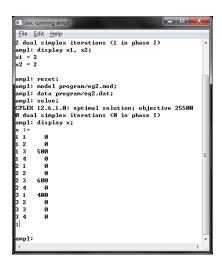
- ▶ The format does not matter.
- ► Reserved words: param.
- Parameter names must be consistent with those defined in the model file.
- ► Array and matrix lengths must be consistent with their limits.
- ▶ Be aware of those :=, ;, and : and the timing of using them.

Solving the second example

➤ Solve the second example by loading the model and data files.

```
reset;
model program/eg2.mod;
data program/eg2.dat;
solve;
display x;
```

▶ Do not forget to reset!



Some remarks

- ▶ The default solver in AMPL is MINOS.
 - ▶ You may choose to use MINOS by typing option solver minos.
 - MINOS can also solve LP.
 - CPLEX uses simplex-based methods while MINOS uses interior search methods (not covered in this course).
 - ▶ For solving LPs, CPLEX performs better.
 - ▶ MINOS cannot solve integer programs; CPLEX can.
- ► AMPL is case-sensitive.
- ▶ Try the AMPL instructions show; and expand; at home.
- ▶ Use exit; to exit the AMPL environment.
- ▶ The official AMPL book is freely available on the official website.