Operations Research, Spring 2016 Suggested Solution for Pre-lecture Problems for Lecture 6

Solution providers: Kiwi Liu and Johnny Chen Department of Information Management National Taiwan University

1. The dual LP is

$$
\begin{array}{rrrrrr}
\min & 10 y_{1} & +16 y_{2} & +14 y_{3} \\
\text { s.t. } & 2 y_{1} & & +y_{3} \geq & 4 \\
& y_{1} & +\quad y_{2} \quad+\quad 3 y_{3} \leq & -2 \\
& y_{2}-3 y_{3}= & 1 \\
& y_{1} \geq 0, \quad y_{2} \leq 0, \quad y_{3} \text { urs. }
\end{array}
$$

2. (a) Its standard form is

$$
\begin{aligned}
\min & 3 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}+x_{4}=8 \\
& x_{1}+2 x_{2}+12 \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{aligned}
$$

-3	-5	0	0	0						
1 1 1 0 1 2 0 1	$x_{3}=8$									
$x_{4}=12$					$\quad \rightarrow \quad$	0	-2	3	0	24
:---:	:---:	:---:	:---:	:---:						
1	1	1	0	$x_{1}=8$						
0	$\boxed{1}$	-1	1	$x_{4}=4$						

$$
\rightarrow \begin{array}{cccc|c}
0 & 0 & 1 & 2 & 32 \\
\hline 1 & 0 & 2 & -1 & x_{1}=4 \\
0 & 1 & -1 & 1 & x_{2}=4
\end{array}
$$

$$
x^{*}=(4,4,0,0)
$$

(b) The dual LP is

$$
\begin{array}{ccc}
\min & 8 y_{1} & +12 x_{2} \\
\text { s.t. } & y_{1}+y_{2} \geq 3 \\
& y_{1}+2 y_{2} \geq 5 \\
& y_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

(c) Its Phase-I LP of the dual is

$$
\begin{aligned}
& y_{i} \geq 0 \quad \forall i=1, \ldots, 6 \text {. } \\
& \begin{array}{cccccc|c}
0 & 0 & 0 & 0 & -1 & -1 & 0 \\
\hline 1 & 1 & -1 & 0 & 1 & 0 & x_{5}=3 \\
1 & 2 & 0 & -1 & 0 & 1 & x_{6}=5
\end{array} \quad \stackrel{\text { adjust }}{\rightarrow} \begin{array}{cccccc|c}
2 & 3 & -1 & -1 & 0 & 0 & 8 \\
\hline \begin{array}{|cccccc}
1 & 1 & -1 & 0 & 1 & 0 \\
1 & 2 & 0 & -1 & 0 & 1
\end{array} & x_{5}=3 \\
x_{6}=5
\end{array} \\
& \rightarrow \begin{array}{ccccc|c}
0 & 1 & 1 & -1 & 0 & 2 \\
\hline 1 & 1 & -1 & 0 & 0 & x_{1}=3 \\
0 & 1 & 1 & -1 & 1 & x_{6}=2
\end{array} \quad \rightarrow \quad \begin{array}{cccc|c}
0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & -2 & 1 & x_{1}=1 \\
0 & 1 & 1 & -1 & x_{2}=2
\end{array}
\end{aligned}
$$

And then the Phase-II

-8	-12	0	0	0
1	0	-2	1	$x_{1}=1$
0	1	1	-1	$x_{2}=2$
	$y^{*}=(1,2,0,0)$.			

$$
c^{T} x^{*}=\left[\begin{array}{ll}
3 & 5
\end{array}\right]\left[\begin{array}{l}
4 \\
4
\end{array}\right]=32=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{c}
8 \\
12
\end{array}\right]=\left(y^{*}\right)^{T} b
$$

3. (a)

$$
A_{B}^{-1} b=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
8 \\
12
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
8 \\
12
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]=x^{*}
$$

(b)

$$
c_{B}^{T} A_{B}^{-1}=\left[\begin{array}{ll}
3 & 5
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2
\end{array}\right]=y^{*}
$$

(c) By proposition 9, shadow prices equal the values of dual variables in the dual optimal solution. Therefore, the shadow price for the first and the second primal constraints are 1 and 2 , respectively.

