Operations Research, Spring 2016 Suggested Solution for Pre-lecture Problems for Lecture 6

Solution providers: Kiwi Liu and Johnny Chen Department of Information Management National Taiwan University

1. The dual LP is

2. (a) Its standard form is

	-3 -5 0 0	0		0 -	2 3	0	24
	1 1 1 0	$x_3 = 8$	\rightarrow				$x_1 = 8$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$x_4 = 12$		0 1] -1	1	$x_4 = 4$
	$0 \ 0 \ 1 \ 2$						
\rightarrow	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{aligned} x_1 &= 4\\ x_2 &= 4 \end{aligned}$					

$$x^* = (4, 4, 0, 0).$$

(b) The dual LP is

(c) Its Phase-I LP of the dual is

	0	0	0	0	-1	-1	0	adjust	2	3	-1	-1	0	0	8
	1	1	-1	0	1	$0 \mid x$	$_{5} = 3$	$\overbrace{\rightarrow}$	1	1	-1	0	1	0	$x_5 = 3$
	1	2	0	-1	0	1 x	$_{6} = 5$		1	2	0	-1	0	1	$x_6 = 5$
	0	1	1	-1	0	2		0 0	0	0		0			
\rightarrow	1	1	-1	0	0	$x_1 = 3$	\rightarrow	1 0	-2	1	x_1	= 1			
	0	1	1	-1	1	$x_6 = 2$		$\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}$	1	-1	x_2	= 2			

And then the Phase-II

3.

(c) By proposition 9, shadow prices equal the values of dual variables in the dual optimal solution. Therefore, the shadow price for the first and the second primal constraints are 1 and 2, respectively.