Operations Research

Applications of Integer Programming

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Facility location problems.
- ► Machine scheduling problems.
- ▶ Vehicle routing problems.

Facility location problems

- ▶ One typical managerial decision is "where to build my facility?"
 - ▶ Where to open convenience stores?
 - ▶ Where to build warehouses or distribution centers?
 - Where to build factories?
 - ▶ Where to build power stations, fire stations, or police stations?
- ▶ A similar question is "where to locate a scarce resource?"
 - ▶ Where to put a limited number of fire engines or ambulances?
 - Where to put a limited number of police officers?
 - ▶ Where to put a limited number of ice cream machines?
- ► These problems are facility location problems.
 - ▶ In this lecture, we focus on **discrete** facility location problems: We choose a subset of locations from a set of finite locations.

Facility location problems

- In general, there are some demand nodes and some potential locations.
 - ▶ We build facilities at locations to serve demands.
 - ▶ E.g., build distribution centers to ship to retail stores.
 - ▶ E.g., build fire stations to cover cities, towns, and villages.
- Facility location problems are typically categorized based on their objective functions.
- ▶ In this lecture, we introduce three types of facility location problems:
 - Set covering problems: Build a minimum number of facilities to cover all demands.
 - Maximum covering problems: Build a given number of facilities to cover as many demands as possible.
 - Fixed charge location problems: Finding a balance between benefit of covering demands and cost of building facilities.

Set covering problems

- Consider a set of demands I and a set of locations J.
- ▶ The distance (or traveling time) between demand i and location j is $d_{ij} > 0, i \in I, j \in J$.
- A service level s > 0 is given: Demand i is said to be "covered" by location j if $d_{ij} < s$.
- Question: How to allocate as few facilities as possible to cover all demands?

- Let's define the following parameter: $a_{ij} = 1$ if $d_{ij} < s$ or 0 otherwise, $i \in I$, $j \in J$.
- ▶ Let's define the following variables: $x_j = 1$ if a facility is built at location $j \in J$ or 0 otherwise.
- ▶ The complete formulation:

$$\min \quad \sum_{j \in J} x_j$$

s.t.
$$\sum_{j \in J} a_{ij} x_j \ge 1 \quad \forall i \in I$$

$$x_j \in \{0, 1\} \quad \forall j \in J.$$

▶ The weighted version: $\min \sum_{i \in I} w_i x_i$.

Maximum covering problems

- ► Consider a set of demands *I* and a set of locations *J*.
- ▶ The distances d_{ij} , service level s, and the covering coefficient a_{ij} are also given.
- ▶ We are restricted to build at most $p \in \mathbb{N}$ facilities.
- Question: How to allocate at most p facilities to cover as many demands as possible?

Maximum covering problems

- ▶ Still let $x_j = 1$ if a facility is built at location $j \in J$ or 0 otherwise.
- ▶ Also let $y_i = 1$ if demand $i \in I$ is covered by any facility or 0 otherwise.
- ▶ The complete formulation:

$$\max \quad \sum_{i \in I} y_i$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \ge y_i \quad \forall i \in I$$

$$\sum_{j \in J} x_j \le p \quad \forall j \in J$$

$$x_j \in \{0, 1\} \quad \forall j \in J$$

$$y_i \in \{0, 1\} \quad \forall i \in I.$$

▶ The weighted version: $\max \sum_{i \in I} w_i y_i$.

Fixed charge location problems

- ightharpoonup Consider a set of demands I and a set of locations J.
- At demand i, the demand size is $h_i > 0$.
- ► The unit shipping cost from location j to demand i is $d_{ij} > 0$.
- ▶ The fixed construction cost at location j is $f_j > 0$.
- Question: How to allocate some facilities to minimize the total shipping and construction costs?

Fixed charge location problems

- ▶ We still need x_j s: $x_j = 1$ if a facility is built at location $j \in J$ or 0 otherwise.
- ▶ We now need y_{ij} s: $y_{ij} = 1$ if demand $i \in I$ is served by facility at location $j \in J$ or 0 otherwise.
- ▶ The complete formulation:

$$\min \quad \sum_{i \in I} \sum_{j \in J} h_i d_{ij} y_{ij} + \sum_{j \in J} f_j x_j$$
s.t.
$$y_{ij} \le x_j \quad \forall i \in I, j \in J$$

$$\sum_{j \in J} y_{ij} = 1 \quad \forall i \in I$$

$$x_j \in \{0, 1\} \quad \forall j \in J$$

$$y_i \in \{0, 1\} \quad \forall i \in I.$$

Fixed charge location problems

- ► The previous model is the **uncapacitated** version.
 - ▶ A facility can serve any amount of demand.
- ▶ If facility at location j has a limited capacity $K_j > 0$, we may add the capacity constraint

$$\sum_{i \in I} h_i y_{ij} \le K_j \quad \forall j \in J.$$

▶ The capacitated version is usually called the capacitated facility location problem (abbreviated as CFL). The uncapacitated one is abbreviated as UFL.

Remarks

- ▶ When to use set covering?
 - ▶ When we are required to take care of (almost) everyone.
 - ► E.g., fire stations and police stations.
- ▶ When to use maximum covering?
 - When budgets are limited.
 - ► E.g., cellular data networks.
- ▶ When to use fixed charge location?
 - ▶ When service costs depends on distances.
 - ▶ E.g., distribution centers.
- ► All the three models are **NP-hard**.
 - ▶ For large instances, it really takes time to obtain an optimal solution.
 - ▶ Many researchers look for effective heuristics for these problems.

Road map

- ► Facility location problems.
- ► Machine scheduling problems.
- ▶ Vehicle routing problems.

Machine scheduling problems

- ▶ In many cases, jobs/tasks must be assigned to machines.
- As an example, consider a factory producing one product for n customers.
 - ▶ Serial production: Only one job can be processed at one time.
 - Each job has its due date.
 - \blacktriangleright How to schedule the n jobs to minimize the total number of delayed jobs?
- ► In this example, scheduling is nothing but **sequencing**.
 - Splitting jobs is not helpful.
 - \triangleright There are n! ways to sequence the n jobs.
 - ▶ Is there a polynomial-time algorithm?
- The problems of scheduling jobs to machines are machine scheduling problems.

Machine scheduling problems

- ▶ Machine scheduling problems can be categorized in multiple ways:
- ▶ Production mode:
 - ▶ Single machine serial production.
 - Multiple parallel machines.
 - ► Flow shop problems.
 - Job shop problems.
- ▶ Job splitting:
 - Non-preemptive problems.
 - Preemptive problems.
- ▶ Performance measurement:
 - ▶ Makespan (the time that all jobs are completed).
 - ▶ (Weighted) total completion time.
 - (Weighted) number of delayed jobs.
 - ▶ (Weighted) total lateness.
 - ▶ (Weighted) total tardiness.
- ▶ And more.

- \triangleright Consider scheduling n jobs on a single machine.
- ▶ Job $j \in J = \{1, 2, ..., n\}$ has **processing time** p_j and due time d_j .
- ▶ Different schedules give these jobs different **completion times**. The completion time of job j is denoted as C_j .
- \blacktriangleright For job j, its **tardiness** is ¹

$$T_j = \max\{C_j - d_j, 0\}.$$

- ▶ There is only one machine, which can process only one job at a time.
- ▶ How to schedule all the jobs to minimize the total tardiness $\sum_{j \in J} T_j$?
- ▶ While many researchers study specific properties and algorithms for specific problems, we will only try to formulate the problem as an integer program.

¹Its **lateness** is $L_j = C_j - d_j$, which may be negative.

- ▶ Let's use C_j to be our decision variables.
- Suppose we schedule jobs 1, 2, ..., and n in this order, we will have $C_1 = p_1, C_2 = p_1 + p_2, ...,$ and $C_n = \sum_{i=1}^n p_i$.
- ▶ A **Gantt chart** is helpful to illustrate a schedule.

- ▶ Obviously, splitting jobs does not help for this problem. (Why?)
- ▶ Because the machine can start job 2 only after job 1 is completed, we have $C_2 \ge C_1 + p_2$ as a constraint. But what if job 2 should be scheduled before job 1?

- ▶ In a feasible schedule, job i is either before or after job j, for all $j \neq i$.
- Therefore, we need to satisfy at least one of the following two constraints:

$$C_j \ge C_i + p_j$$
 and $C_i \ge C_j + p_i$.

- ▶ Let $z_{ij} = 1$ if job j is before job i or 0 otherwise, $i \in J$, $j \in J$, i < j.
- ▶ The constraints we need:

$$C_i + p_j - C_j \le M z_{ij}$$

$$C_j + p_i - C_i \le M(1 - z_{ij})$$

- \blacktriangleright What value of M works?
 - How about $M = \sum_{i \in J} p_i$?

▶ It remains to linearize the objective function

$$\min \sum_{j \in J} \max\{C_j - d_j, 0\}.$$

▶ The complete formulation:

$$\begin{aligned} & \min \quad \sum_{j \in J} T_j \\ & \text{s.t.} \quad T_j \geq C_j - d_j & \forall j \in J \\ & \quad C_i + p_j - C_j \leq M z_{ij} & \forall i \in J, j \in J, i < j \\ & \quad C_j + p_i - C_i \leq M (1 - z_{ij}) & \forall i \in J, j \in J, i < j \\ & \quad T_j \geq 0, C_j \geq 0 & \forall j \in J \\ & \quad z_{ij} \in \{0, 1\} & \forall i \in J, j \in J, i < j. \end{aligned}$$

Minimizing makespan on parallel machines

- \triangleright Consider scheduling n jobs on m parallel machines.
- ▶ Job $j \in J = \{1, 2, ..., n\}$ has processing time p_j .
- ▶ The capacity of machine $i \in I = \{1, 2, ..., m\}$ is unlimited.
- ▶ A job can be processed at any machine. However, it can be processed only on one machine.

- \triangleright Different schedules give these jobs different completion times C_i s.
- ▶ The makespan of a schedule is $\max_{j \in J} C_j$.
- ▶ How may we minimize the makespan?

Minimizing makespan on parallel machines

- ▶ As long as some jobs are assigned to a machine, the sequence on that machine does not matter.
- ► The problem of minimizing makespan is just to **assign** jobs to machines.
- ▶ Let $x_{ij} = 1$ if job $j \in J$ is assigned to machine $i \in I$ or 0 otherwise.
- \blacktriangleright On machine $i \in I$, the last job is completed at

$$\sum_{j \in J} p_j x_{ij}.$$

► The objective is to

$$\min \max_{i \in I} \left\{ \sum_{j \in J} p_j x_{ij} \right\}.$$

How to linearize it?

Minimizing makespan on parallel machines

▶ The complete formulation is

$$\begin{aligned} & \text{min} \quad M \\ & \text{s.t.} \quad M \geq \sum_{j \in J} p_j x_{ij} \quad \forall i \in I \\ & \sum_{i \in I} x_{ij} = 1 \quad \forall j \in J \\ & x_{ij} \in \{0,1\} \quad \forall i \in I, j \in J. \end{aligned}$$

Sometimes people want to maximize the completion time of the least-loaded machine (for, e.g., fairness):

$$\begin{array}{ll} \max & M \\ \text{s.t.} & M \leq \sum_{j \in J} p_j x_{ij} \quad \forall i \in I \\ & \sum_{i \in I} x_{ij} = 1 \quad \forall j \in J \\ & x_{ij} \in \{0,1\} \quad \forall i \in I, j \in J. \end{array}$$

Road map

- ▶ Facility location problems.
- ▶ Machine scheduling problems.
- ▶ Vehicle routing problems.

Vehicle routing problems

- ▶ In many cases, we need to deliver/collect items to/from customers in the most efficient way.
- ► E.g., consider a post officer who needs to deliver to four addresses.
- ► The shortest path between any pair of two addresses can be obtained.
- ▶ This is a **routing** problem: To choose a route starting from the office, passing each address exactly once, and then returning to the office.
- ► This is a sequencing problem; in total there are 4! = 24 feasible routes.
- ▶ Which route minimizes the total distance (or travel time)?

Vehicle routing problems

- ► The problem described above is the famous traveling salesperson problem.
 - ▶ It assumes that the truck has ample capacity.
- ▶ Consider the truck towing bicycles in NTU. It must start at the car pound, pass several locations in NTU, and then return to the origin.
 - However, the truck capacity is quite limited (because too many people violate the parking regulation).
 - The driver needs to find multiple routes to cover all the locations.
- ► The traveling salesperson problem (TSP) is a special case of **vehicle routing problems**.

Traveling salesperson problem

- ▶ How to formulate the TSP into an integer program?
- ▶ Let's consider a directed complete network G = (V, E).
 - ▶ There are n nodes and n(n-1) arcs.
 - ▶ The arc weight for arc (i, j) is $d_{ij} > 0$.
- \blacktriangleright We select a few arcs in E to form a **tour**.
 - \triangleright To form a tour, we need to select n arcs.
 - ightharpoonup These n arcs should form a cycle passing all nodes.
- ▶ Let $x_{ij} = 1$ if arc $(i, j) \in E$ is selected or 0 otherwise.
 - ► The objective:

$$\min \sum_{(i,j)\in E} d_{ij} x_{ij}.$$

- ▶ How to ensure the routing requirement?
- ▶ Is $\sum_{(i,j)\in E} d_{ij}x_{ij} = n$ enough?

Traveling salesperson problem

- ▶ For node $k \in V$:
 - ▶ We must select exactly one incoming arc:

$$\sum_{i \in V, i \neq k} x_{ik} = 1.$$

We must select exactly one outgoing arc:

$$\sum_{j \in V, j \neq k} x_{kj} = 1.$$

- ▶ Now each node is on a cycle.
- ▶ However, these are not enough to prevent **subtours**.

Eliminating subtours: alternative 1

- ▶ There are at least two ways to eliminate subtours.
- ► For each **subset of nodes** with at least two nodes, we limit the maximum number of arcs selected:

$$\sum_{i \in S, j \in S, i \neq j} x_{ij} \le |S| - 1 \quad \forall S \subsetneq V, |S| \ge 2.$$

▶ When we have n nodes, we have $2^n - n - 1$ constraints.

Eliminating subtours: alternative 2

- ▶ Let u_i s represent the order of passing nodes. More precisely, $u_i = k$ if node i is the kth node to be passed in a tour.
- ▶ We add the following constraints:

$$u_1 = 1$$

$$2 \le u_i \le n \quad \forall i \in V \setminus \{1\}$$

$$u_i - u_j + 1 \le (n-1)(1 - x_{ij}) \quad \forall (i,j) \in E, i \ne 1, j \ne 1.$$

- ▶ If $x_{ij} = 0$, there is no constraint for u_i and u_j ; otherwise, u_j must be larger than u_i by at least 1.
- ▶ If a tour does not contain node 1, the last constraint pushes those u_i s to infinity and violates constraint 2.
- ▶ Note that only node 1 is not restricted by these constraints!
- When we have n nodes, we have n additional variables and n + (n-1)(n-2) constraints.

The complete formulation

▶ The complete formulation is

$$\min \quad \sum_{(i,j) \in E} d_{ij} x_{ij}$$
s.t.
$$\sum_{i \in V, i \neq k} x_{ik} = 1 \quad \forall k \in V$$

$$\sum_{j \in V, j \neq k} x_{kj} = 1 \quad \forall k \in V$$

$$x_{ij} \in \{0, 1\} \qquad \forall (i, j) \in E.$$

with either alternative 1 or alternative 2.

▶ Which alternative is better?