Operations Research, Spring 2016 Suggested Solution for Pre-lecture Problems for Lecture 8

Solution providers: Kiwi Liu and Johnny Chen
Department of Information Management National Taiwan University

1. (a) Let the demand set I and the location set J both be the six towns, who locate at $\{(0,60)$, $(20,50),(30,20),(40,80),(50,50),(90,60)\}$.
Suppose that there are 52 weeks in a year, the 5 -year demand size is $h_{i} \in\{2600000,3900000$, 3120000, 8000, 2080000, 780000 \}, at demand $i \in I$.
The distance between location $j \in J$ and demand $i \in I$ is $d_{i j}$.
The fixed construction cost at location $j \in J$ is $f_{j} \in\{200000,180000,160000,190000,150000,200000\}$.
Let $x_{j}=1$ if a DC is built at location $j \in J$ or 0 otherwise.
Let $y_{i j}=1$ is demand $i \in I$ is served by DC at location $j \in J$ or 0 otherwise.

$$
\begin{array}{ll}
\min & \sum_{i \in I} \sum_{j \in J} \frac{h_{i} j}{500} d_{i j} y_{i j}+\sum_{j \in J} f_{j} x_{j} \\
\text { s.t. } & y_{i} j \leq x_{j} \quad \forall i \in I, j \in J \\
& \sum_{j \in J} y_{i j}=1 \quad \forall i \in I \\
& x_{3}=1 \\
& x_{j} \in\{0,1\} \quad \forall j \in J \\
& y_{i} \in\{0,1\} \quad \forall i \in I, j \in J .
\end{array}
$$

(b) Reset the location set J to $\{(0,60),(20,50),(30,20),(40,80),(50,50),(90,60),(0,20),(20$, $40),(40,30),(60,40)\}$ and everything follows.
2. (a) For each job $j \in J=\{1,2, \ldots, 10\}$, the processing time is p_{j} and the due time is d_{j}, where $p_{j} \in\{6,9,3,5,10,6,3,9,7,10\}$ and $d_{j} \in\{50,53,55,56,59,60,62,67,68,70\}$.
let C_{j} be the completion time of job $j \in J$.
Let $z_{i j}=1$ if job j is before job i or 0 otherwise, $i \in J, j \in J, i<j$.
Let $M=\sum_{j \in J} p_{j}$.

$$
\begin{array}{lll}
\min & \sum_{j \in J} T_{j} & \\
\text { s.t. } & T_{j} \geq C_{j}-d_{j} & \forall j \in J \\
& C_{i}+p_{j}-C_{j} \leq M z_{i j} & \forall i \in J, j \in J, i<j \\
& C_{j}+p_{i}-C_{i} \leq M\left(1-z_{i j}\right) & \forall i \in J, j \in J, i<j \\
& T_{j} \geq 0, C_{j} \geq 0 & \forall j \in J \\
& z_{i j} \in\{0,1\} & \forall i \in J, j \in J, i<j .
\end{array}
$$

(b)

$$
\begin{array}{lll}
\min & \sum_{j \in J} T_{j} & \\
\text { s.t. } & T_{j} \geq C_{j}-d_{j} & \forall j \in J \\
& C_{i}+p_{j}-C_{j} \leq M z_{i j} & \forall i \in J, j \in J, i<j \\
& C_{j}+p_{i}-C_{i} \leq M\left(1-z_{i j}\right) & \forall i \in J, j \in J, i<j \\
& T_{j} \geq 0, C_{j} \geq 0 & \forall j \in J \\
& z_{15}=0 & \\
& z_{34}=0 & \\
& z_{57}=0 & \\
& z_{67}=0 & \\
& z_{69}=0 & \forall i \in J, j \in J, i<j .
\end{array}
$$

3. (a) Following the notation in Problem 1, let $a_{i j}=1$ if $d_{i j}<40$ or 0 otherwise, $i \in I, j \in J$.

$$
\begin{array}{ll}
\min & \sum_{j \in J} x_{j} \\
\text { s.t. } & \sum_{j \in J} a_{i j} x_{j} \geq 1 \quad \forall i \in I \\
& x_{3}=1 \\
& x_{j} \in\{0,1\} \quad \forall j \in J .
\end{array}
$$

(b) Let V be the 6 towns.

Let E be all the paths between 6 towns.
Let $d_{i j}$ be the distance of path $(i, j) \in E$.
Let $x_{i j}=1$ if the path between the town i and the town j is selected, $(i, j) \in E$.

$$
\left.\begin{array}{ll}
\min & \sum_{(i, j) \in E} d_{i j} x_{i j} \\
\text { s.t. } & \sum_{i \in V, i \neq k} x_{i k}=1 \\
& \sum_{j \in V, j \neq k} x_{k j}=1
\end{array}\right) \forall k \in V, \begin{array}{ll}
& \forall k \in V \\
& \sum_{\substack{j \in S, j \in S, i \neq j}} x_{i j} \leq|S|-1 \\
x_{i j} \in\{0,1\} & \forall S \subsetneq V,|S| \geq 2 \\
& \forall(i, j) \in E .
\end{array}
$$

