Operations Research, Spring 2015

Pre-lecture Problems for Lecture 10: Network Flow Models

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

Note. You do not need to submit anything.

1. (0 point) Consider the directed network

$$G = (V, E) = \left(\left\{ O, A, B, C, D, E, T \right\}, \right.$$

$$\left. \left\{ (O, A), (O, B), (O, C), (A, B), (A, D), (B, C), \right.$$

$$\left. (B, D), (B, E), (C, E), (D, E), (D, T), (E, T) \right\} \right)$$

with arc weights defined in the following table:

(i,j)	(O,A)	(O,B)	(O, C)	(A,B)	(A, D)	(B,C)
weight	2	5	4	2	7	1
(i,j)	(B,D)	(B,E)	(C, E)	(D,E)	(D,T)	(E,T)
weight	4	3	4	1	5	7

- (a) Depict G.
- (b) Treat arc weights as distances, formulate the shortest path problem from O to T as an IP.
- (c) Show that the coefficient matrix of the IP in (b) is totally unimodular.
- 2. (0 point) Consider the network G in Problem 1.
 - (a) Treat arc weights as capacities, formulate the maximum flow problem from O to T as an IP.
 - (b) Show that the coefficient matrix of the IP in (a) is totally unimodular.