Operations Research, Spring 2016
 Suggested Solution for Pre-lecture Problems for Lecture 12

Solution providers: Kiwi Liu and Johnny Chen
Department of Information Management National Taiwan University

1. (a) By leading principal minors:

$$
|2|=2 \quad \text { and } \quad\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|=0
$$

Therefore, this matrix is positive semi-definite.
(b) By leading principal minors:

$$
\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|=-1 .
$$

Therefore, this matrix is not positive semi-definite.
(c) By leading principal minors:

$$
|1|=1, \quad\left|\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right|=3 \quad \text { and } \quad\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 3 & 1 \\
0 & 0 & 2
\end{array}\right|=6
$$

Therefore, this matrix is positive semi-definite.
2. (a)

$$
f^{\prime}(x)=3 x^{2}+4 x+1 \quad \text { and } \quad f^{\prime \prime}(x)=6 x+4
$$

Therefore, $f(x)$ is convex for $x \in\left[-\frac{2}{3}, \infty\right)$.
(b)

$$
\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}
3 x_{1}^{2}+1 \\
4 x_{2}
\end{array}\right] \quad \text { and } \quad \nabla^{2} f\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
6 x_{1} & 0 \\
0 & 4
\end{array}\right] .
$$

By leading principal minors: $\nabla^{2} f\left(x_{1}, x_{2}\right)$ is positive semi-definite iff

$$
6 x_{1} \geq 0 \quad \text { and } \quad\left|\begin{array}{cc}
6 x_{1} & 0 \\
0 & 4
\end{array}\right|=12 x_{1} \geq 0
$$

Therefore, $f\left(x_{1}, x_{2}\right)$ is convex for $x_{1} \in\left[-\frac{2}{3}, \infty\right), x_{2} \in \mathbb{R}$.
(c)

$$
\nabla f\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{c}
2 x_{1} x_{3}+1 \\
2 x_{3} \\
x_{1}^{2}+2 x_{2}
\end{array}\right] \quad \text { and } \quad \nabla^{2} f\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{ccc}
2 x_{3} & 0 & 2 x_{1} \\
0 & 0 & 2 \\
2 x_{1} & 2 & 0
\end{array}\right]
$$

By leading principal minors: $\nabla^{2} f\left(x_{1}, x_{2}, x_{3}\right)$ is positive semi-definite iff

$$
2 x_{3} \geq 0, \quad\left|\begin{array}{cc}
2 x_{3} & 0 \\
0 & 0
\end{array}\right|=0 \geq 0 \quad \text { and } \quad\left|\begin{array}{ccc}
2 x_{3} & 0 & 2 x_{1} \\
0 & 0 & 2 \\
2 x_{1} & 2 & 0
\end{array}\right|=-8 x_{3} \geq 0
$$

Therefore, $f\left(x_{1}, x_{2}, x_{3}\right)$ is convex for $x_{1} \in \mathbb{R}, x_{2} \in \mathbb{R}$, and $x_{3}=0$.
3. (a) Let $f(x)=\left(x_{1}-2\right)^{2}+\left(x_{2}-3\right)^{2}$.

$$
\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
2 x_{1}-4 \\
2 x_{2}-6
\end{array}\right] \quad \text { and } \quad \nabla^{2} f\left(x_{1}, x_{2}\right)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] .
$$

By leading principal minors:

$$
|2|=2 \quad \text { and } \quad\left|\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right|=4
$$

Therefore, $f\left(x_{1}, x_{2}\right)$ is convex for $x_{1} \in \mathbb{R}$ and $x_{2} \in \mathbb{R}$.
Since the feasible region of the NLP is convex and the objective function of the NLP over the feasible region is convex, the NLP is a convex program.
(b)

$$
\mathcal{L}\left(x_{1}, x_{2} \mid \lambda\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-3\right)^{2}-\lambda\left(4-2 x_{1}-x_{2}\right), \text { where } \lambda \geq 0
$$

(c) The Lagrangian relaxation is

$$
z^{L}(\lambda)=\min \mathcal{L}\left(x_{1}, x_{2} \mid \lambda\right)=\min \left(x_{1}-2\right)^{2}+\left(x_{2}-3\right)^{2}-\lambda\left(4-2 x_{1}-x_{2}\right)
$$

(d)

$$
\nabla \mathcal{L}=0 \Rightarrow\left[\begin{array}{c}
2\left(x_{1}-2\right)+2 \lambda \\
2\left(x_{2}-3\right)+\lambda
\end{array}\right]=0 \Rightarrow x_{1}-2=2 x_{2}-6 \Rightarrow x_{1}-2 x_{2}+4=0
$$

(e) Based on the complementary slackness $\lambda\left(4-2 x_{1}-x_{2}\right)=0$, either $\lambda=0$ or $\left(4-2 x_{1}-x_{2}\right)=0$. If $\lambda=0$, the solution is $\left(x_{1}, x_{2}\right)=(2,3)$, which is against the primal feasibility $2 x_{1}-x_{2} \leq 4$. If $\left(4-2 x_{1}-x_{2}\right)=0$., the solution is $\left(x_{1}, x_{2}\right)=(0.8,2.4)$, which is feasible and therefore optimal.

