Operations Research, Spring 2017 Suggested Solution For Homework 3

Solution providers: Peter Chien, Jeremy Chang
Department of Information Management National Taiwan University

1. (a) $\nabla \pi(p)=a e^{-b p}[b(c-p)+1], \quad \nabla^{2} \pi(p)=a b e^{-b p}[b(p-c)-2]$
(b) Both of the answers are when $a b e^{-b p}[b(p-c)-2] \leq 0 \Rightarrow p \leq \frac{b c+2}{b}$.
(c) $a e^{-b p}[b(c-p)+1]=0 \Rightarrow \bar{p}=\frac{b c+1}{b}$ $\nabla^{2} \pi(\bar{p})=-a b e^{-b p} \leq 0$
yes, we can conclude the \bar{p} is global optimal because it's a concave function.
(d) Because $\nabla \pi(c)=a e^{-b p}>0, \nabla \pi(\infty)=-\infty<0$ and it's concave function, we can show that $\nabla \pi(p)$ is first positive and then negative. we can conclude the \bar{p} is global optimal because it's a concave function.
2. (a) Let the decision variables be
$q_{1}=$ supply quantities for product 1
$q_{2}=$ supply quantities for product 2

$$
\begin{aligned}
\max _{q_{1}, q_{2}} \pi\left(q_{1}, q_{2}\right)= & \left(a_{1}-b_{1} q_{1}\right) q_{1}+\left(a 2-b_{2} q_{2}\right) q_{2} \\
\text { s.t. } & q_{1}+q_{2} \leq K \\
& q_{1} \geq 0 \\
& q_{2} \geq 0
\end{aligned}
$$

We can transform the objective function:

$$
\max _{q_{1}, q_{2}}=\left(a_{1}-b_{1} q_{1}\right) q_{1}+\left(a 2-b_{2} q_{2}\right) q_{2} \Rightarrow \min _{q_{1}, q_{2}}-\pi\left(q_{1}, q_{2}\right)=-\left[\left(a_{1}-b_{1} q_{1}\right) q_{1}+\left(a 2-b_{2} q_{2}\right) q_{2}\right]
$$

$\nabla^{2}-\pi\left(q_{1}, q_{2}\right)=\left[\begin{array}{cc}2 b_{1} & 0 \\ 0 & 2 b_{2}\end{array}\right] \geq 0$ it's a convex function. So $\pi\left(q_{1}, q_{2}\right)$ is a concave function.
And the constraint is a linear function. As the result, it is a convex program.
(b) The Lagrangian is $\mathcal{L}(q \mid \lambda)=\left(a_{1}-b_{1} q_{1}\right) q_{1}+\left(a_{2}-b_{2} q_{2}\right) q_{2}+\lambda\left(K-q_{1}-q_{2}\right)$
$\frac{\partial \mathcal{L}(q \mid \lambda)}{\partial q_{1}}=a_{1}-2 b_{1} q_{1}-\lambda, \frac{\partial \mathcal{L}(q \mid \lambda)}{\partial q_{2}}=a_{2}-2 b_{2} q_{2}-\lambda$
The KKT condition for the problem is as follow $\lambda \geq 0$
i. Primal feasibility: $q_{1}+q_{2} \leq K$
ii. Dual feasibility: $a_{i}-2 b_{i} q_{i}-\lambda \quad \forall i=1,2$
iii. Complementary slackness: $\lambda\left(K-q_{1}-q_{2}\right)=0$
(c) By part(b), $q_{i}=\frac{a_{i}-\lambda}{2 b_{i}} \quad \forall i=1,2$. Because the constraint may be binding or nonbinding, there are two situation:
i. If the constraint is binding, then $q_{1}+q_{2}=K \Rightarrow q_{1}=\frac{a_{1}-a_{2}+2 b_{2} K}{2\left(b_{1}+b_{2}\right)}, q_{2}=\frac{a_{2}-a_{1}+2 b_{1} K}{2\left(b_{1}+b_{2}\right)}$
ii. If the constraint is nonbinding, then $q_{1}=\frac{a_{1}}{2 b_{1}}, q_{1}=\frac{a_{2}}{2 b_{2}}$

Combine the above result, we can find an optimal analytical solution:
i. $\pi\left(q_{1}^{*}, q_{2}^{*}\right)=\left(a_{1}-b_{1} \frac{a_{1}-a_{2}+2 b_{2} K}{2\left(b_{1}+b_{2}\right)}\right) \frac{a_{1}-a_{2}+2 b_{2} K}{2\left(b_{1}+b_{2}\right)}+\left(a_{2}-b_{2} \frac{a_{2}-a_{1}+2 b_{1} K}{2\left(b_{1}+b_{2}\right)}\right) \frac{a_{2}-a_{1}+2 b_{1} K}{2\left(b_{1}+b_{2}\right)}$ when the constraint is binding.
ii. $\pi\left(q_{1}^{*}, q_{2}^{*}\right)=\frac{a_{1}^{2} b_{2}+a_{1}^{2} b_{1}}{4 b_{1} b_{2}}$ when the constraint is nonbinding.
(d) If the constraint is nonbinding, K has no impact on the quantities, because there is no K in the quantities. However, If the constraint is binding, quantities will increase in K, because the quantity is proportional to K. The intuitive explanation: the demand limit K release, we can supply more products.
3. (a) The gradient of f is

$$
\left[\begin{array}{c}
2 e^{x_{1}} \\
x_{2}
\end{array}\right]
$$

The Hessian of f is

$$
\left[\begin{array}{cc}
2 e^{x_{1}} & 0 \\
0 & 1
\end{array}\right]
$$

(b) The next solution with Newtons method.

$$
x^{1}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]-\frac{1}{2 e^{2}}\left[\begin{array}{cc}
1 & 0 \\
0 & 2 e^{2}
\end{array}\right]\left[\begin{array}{c}
2 e^{2} \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

(c) The next solution with gradient descent method.

$$
x^{1}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]-1\left[\begin{array}{c}
2 e^{2} \\
2
\end{array}\right]=\left[\begin{array}{c}
2\left(1-e^{2}\right) \\
0
\end{array}\right]
$$

(d) The process of choosing the step size to reaches the lowest point.

$$
a_{0}=\operatorname{argmin}_{a \geq 0} f\left(x^{0}-a \nabla f\left(x^{0}\right)\right)
$$

Where

$$
f\left(2-2 a e^{2}, 2-2 a\right)=2 e^{2\left(1-a e^{2}\right)}+\frac{(2-2 a)^{2}}{2}=g(a)
$$

By FOC, $g^{\prime}(a)=-4 \mathrm{e}^{4-2 \mathrm{e}^{2} a}-2(2-2 a)=0$ when $a \approx 1$
Therefore, we can obtain next solution by the gradient descent method:

$$
x^{1}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]-1\left[\begin{array}{c}
2 e^{2} \\
2
\end{array}\right]=\left[\begin{array}{c}
2\left(1-e^{2}\right) \\
0
\end{array}\right]
$$

4. (omitted)
5. Full English names of the instructor : Ling-Chieh Kung.

Full English names of the TAs : Share Lin, Jeremy Chang, Peter Chien.

