Operations Research, Spring 2017
 Suggested Solution for Pre-lecture Problems for Lecture 2

Solution providers: Share Lin
Department of Information Management National Taiwan University

1. The graphic solution is shown in Figure 1. We may push the indifference line and find out the optimal solution $\left(x_{1}, x_{2}\right)=(16,0)$.

Figure 1: Graphical solution for Problem 1

Figure 2: Graphical solution for Problem 3
2. Let x_{1} and y_{1} be the numbers of tables and chairs produced by Bob, x_{2} and y_{2} be the numbers of tables and chairs produced by his two employees, respectively. The problem can then be formulated as
$\max 200\left(x_{1}+x_{2}\right)+80\left(y_{1}+y_{2}\right)-50\left[2\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)\right]=100\left(x_{1}+x_{2}\right)+30\left(y_{1}+y_{2}\right)$
s.t. $\frac{1}{0.5} x_{1}+y_{1} \leq 12$
$\frac{1}{0.3} x_{1}+\frac{1}{0.8} x_{2} \leq 8 \times 2$
$x_{i}, y_{i} \geq 0 \quad \forall i=1,2$.
3. (a) Let x_{1} and x_{2} be the numbers of tables and chairs produced, respectively. The problem can then be formulated as

$$
\begin{aligned}
\max & 100 x_{1}+80 x_{2}-40\left(3 x_{1}+2 x_{2}\right)=-20 x_{1} \\
\text { s.t. } & 3 x_{1}+2 x_{2} \leq 15 \\
& \frac{1}{0.6} x_{1}+x_{2} \leq 12 \\
& x_{2} \leq 2 x_{1} \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{aligned}
$$

(b) The graphical solution is shown in Figure 2. We may push the indifference line and find out the optimal solution $\left(x_{1}, x_{2}\right)=(0,0)$. Since producing both tables and chairs are not beneficial, we suggest Tom not to produce any of them.

