	Standard form 00000000	Basic solutions 0000000000000	The simplex method	Tableaus 00000000	Unbounded LPs 000000	Infeasible LPs 0000000000000
--	---------------------------	----------------------------------	--------------------	----------------------	-------------------------	---------------------------------

Operations Research The Simplex Method

Ling-Chieh Kung

Department of Information Management National Taiwan University

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Introduction

- Let's study how to **solve** an LP.
- ▶ The algorithm we will introduce is **the simplex method**.
 - Developed by George Dantzig in 1947.
 - ▶ Opened the whole field of Operations Research.
 - ▶ Implemented in most commercial LP solvers.
 - Very efficient for almost all practical LPs.
 - With very simple ideas.
- ▶ The method is general in an indirect manner.
 - ▶ There are many different forms of LPs.
 - We will first show that each LP is equivalent to a standard form LP.
 - ▶ Then we will show how to solve standard form LPs.
- ▶ Read Sections 4.1 to 4.4 of the textbook thoroughly!
- ▶ This lecture will be full of **algebra** and **theorems**. Get ready!

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
●0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Road map

▶ The standard form.

- Basic solutions.
- ▶ The simplex method.
- ▶ The tableau representation.
- Unbounded LPs.
- ▶ Infeasible LPs.

Standard form LPs

▶ First, let's define the standard form.¹

Definition 1 (Standard form LP)

An LP is in the standard form if

- ▶ all the RHS values are nonnegative,
- ▶ all the variables are nonnegative, and
- ▶ all the constraints are equalities.
- ▶ RHS = right hand sides. For any constraint

$$g(x) \le b$$
, $g(x) \ge b$, or $g(x) = b$,

b is the RHS.

▶ There is no restriction on the objective function.

¹In the textbook, this form is called the augmented form. In the world of OR, however, "standard form" is a more common name for LPs in this format.

The Simplex Method

Finding the standard form

- ▶ How to find the standard form for an LP?
- ▶ Requirement 1: Nonnegative RHS.
 - ▶ If it is negative, **switch** the LHS and the RHS.

► E.g.,

$$2x_1 + 3x_2 \le -4$$

is equivalent to

$$-2x_1 - 3x_2 \ge 4.$$

Finding the standard form

- ▶ Requirement 2: Nonnegative variables.
 - If x_i is **nonpositivie**, replace it by $-x_i$. E.g.,

 $2x_1 + 3x_2 \le 4, x_1 \le 0 \quad \Leftrightarrow \quad -2x_1 + 3x_2 \le 4, x_1 \ge 0.$

• If x_i is **free**, replace it by $x'_i - x''_i$, where $x'_i, x''_i \ge 0$. E.g.,

 $2x_1 + 3x_2 \le 4, x_1$ urs. $\Leftrightarrow 2x'_1 - 2x''_1 + 3x_2 \le 4, x'_1 \ge 0, x''_1 \ge 0.$

$x_i = x_i^\prime - x_i^{\prime\prime}$	$x_i' \geq 0$	$x_i'' \ge 0$
5	5	0
0	0	0
-8	0	8

Finding the standard form

- ▶ Requirement 3: Equality constraints.
 - ▶ For a "≤" constraint, add a slack variable. E.g.,

 $2x_1 + 3x_2 \le 4 \quad \Leftrightarrow \quad 2x_1 + 3x_2 + x_3 = 4, \quad x_3 \ge 0.$

▶ For a "≥" constraint, **minus a surplus/excess** variable. E.g.,

 $2x_1 + 3x_2 \ge 4 \quad \Leftrightarrow \quad 2x_1 + 3x_2 - x_3 = 4, \quad x_3 \ge 0.$

- ▶ For ease of exposition, they will both be called slack variables.
- ▶ A slack variable measures the **gap** between the LHS and RHS.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

An example

Standard form LPs in matrices

- Given **any** LP, we may find its standard form.
- ▶ With matrices, a standard form LP is expressed as

 $\begin{array}{rll} \min & c^T x \\ & \text{s.t.} & Ax = b \\ & x \ge 0. \end{array}$ $\blacktriangleright \text{ E.g., for} & c = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \end{bmatrix}, b = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \text{ and} \\ \begin{array}{r} \text{s.t.} & x_1 + 5x_2 + x_3 & = 5 \\ 3x_1 - 6x_2 & + x_4 & = 4 \\ x_i \ge 0 \quad \forall i = 1, ..., 4, \end{array}$ $A = \begin{bmatrix} 1 & 5 & 1 & 0 \\ 3 & -6 & 0 & 1 \end{bmatrix}.$

• We will denote the number of constraints and variables as m and n.

- $A \in \mathbb{R}^{m \times n}$ is called the **coefficient matrix**.
- $b \in \mathbb{R}^m$ is called the **RHS vector**.
- $c \in \mathbb{R}^n$ is called the **objective vector**.
- ▶ The objective function can be either max or min.

Solving standard form LPs

▶ So now we only need to find a way to solve standard form LPs.

► How?

- A standard form LP is still an LP.
- ▶ If it has an optimal solution, it has an **extreme point** optimal solution! Therefore, we only need to search among extreme points.
- Our next step is to understand more about the extreme points of a standard form LP.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	●000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Road map

- ▶ The standard form.
- ► Basic solutions.
- ▶ The simplex method.
- ▶ The tableau representation.
- Unbounded LPs.
- ▶ Infeasible LPs.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Basic solutions

• Consider a standard form LP with m constraints and n variables

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax = b\\ & x \ge 0. \end{array}$$

- We may assume that rank A = m, i.e., all rows of A are independent.²
- ▶ This then implies that $m \le n$. As the problem with m = n is trivial, we will assume that m < n.

²This assumption is without loss of generality. Why?

Standard form 00000000	Basic solutions $000000000000000000000000000000000000$	The simplex method 000000000000000000000000000000000000	Tableaus 00000000	Unbounded LPs 000000	Infeasible LPs 0000000000000

Basic solutions

For the system Ax = b, now there are more columns than rows. Let's select some columns to form a **basic solution**:

Definition 2 (Basic solution)

A basic solution to a standard form LP is a solution that (1) has n - m variables being equal to 0 and (2) satisfies Ax = b.

- The n m variables chosen to be zero are **nonbasic variables**.
- The remaining m variables are **basic variables**.
- The set of basic variables is called a **basis**.
- These m columns form a nonsingular/invertible $m \times m$ matrix A_B .
- We use $x_B \in \mathbb{R}^m$ and $x_N \in \mathbb{R}^{n-m}$ to denote basic and nonbasic variables, respectively, with respect to a given set of basic variables B.
 - We have $x_N = 0$ and $x_B = A_B^{-1}b$.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

- In the standard form, m = 2 and n = 4.
 - There are n m = 2 nonbasic variables.
 - There are m = 2 basic variables.
- Steps for obtaining a basic solution:
 - Determine a set of m basic variables to form a basis B.
 - The remaining variables form the set of nonbasic variables N.
 - Set nonbasic variables to zero: $x_N = 0$.
 - Solve the *m* by *m* system $A_B x_B = b$ for the values of basic variables.
- ▶ For this example, we will solve a two by two system for each basis.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

▶ The two equalities are

• Let's try $B = \{x_1, x_2\}$ and $N = \{x_3, x_4\}$:

The solution is $(x_1, x_2) = (2, 2)$. Therefore, the basic solution associated with this basis B is $(x_1, x_2, x_3, x_4) = (2, 2, 0, 0)$.

• Let's try $B = \{x_2, x_3\}$ and $N = \{x_1, x_4\}$:

As $(x_2, x_3) = (6, -6)$, the basic solution is $(x_1, x_2, x_3, x_4) = (0, 6, -6, 0)$.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

- ► In general, as we need to choose m out of n variables to be basic, we have at most ⁿ_m different bases.³
- ▶ In this example, we have exactly $\binom{4}{2} = 6$ bases.
- By examining all the six bases one by one, we may find all those associated basic variables:

B	Ε	Basic s	solutio	n
D	x_1	x_2	x_3	x_4
$\{x_1, x_2\}$	2	2	0	0
$\{x_1, x_3\}$	3	0	3	0
$\{x_1, x_4\}$	6	0	0	-6
$\{x_2, x_3\}$	0	6	-6	0
$\{x_2, x_4\}$	0	3	0	3
$\{x_3, x_4\}$	0	0	6	6

³Why "at most"? Why not "exactly"?

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Basic feasible solutions

- ▶ Among all basic solutions, some are feasible.
 - By the definition of basic solutions, they satisfy Ax = b.
 - If one also satisfies $x \ge 0$, it satisfies all constraints.
- ▶ In this case, it is called **basic feasible solutions** (bfs).⁴

Definition 3 (Basic feasible solution)

A basic feasible solution to a standard form LP is a basic solution whose basic variables are all nonnegative.

Basic	Basic solution					
Dasis	x_1	x_2	x_3	x_4		
$\{x_1, x_2\}$	2	2	0	0		
$\{x_1, x_3\}$	3	0	3	0		
$\{x_1, x_4\}$	6	0	0	-6		
$\{x_2, x_3\}$	0	6	-6	0		
$\{x_2, x_4\}$	0	3	0	3		
$\{x_3, x_4\}$	0	0	6	6		

▶ Which are bfs?

⁴In the textbook, the abbreviation is "BF solutions".

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	00000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Basic feasible solutions and extreme points

▶ Why bfs are important? They are just extreme points!

Theorem 1 (Extreme points and basic feasible solutions)

For a standard form LP, a solution is an extreme point of the feasible region if and only if it is a basic feasible solution to the LP.

▶ The implication is direct:

Theorem 2 (Optimality of basic feasible solutions)

For a standard form LP, if there is an optimal solution, there is an optimal basic feasible solution.

▶ Though we cannot prove Theorem 1 here, let's get some intuitions.⁵

⁵Please note that these "intuitions" are never rigorous.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	000000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

An example

▶ There is a one-to-one mapping between bfs and extreme points.

Solving standard form LPs

▶ To find an optimal solution:

- ▶ Instead of searching among all extreme points, we search among all bfs.
- Extreme points are defined **geometrically**; bfs are **algebraically**.
- Checking whether a solution is basic feasible is easy (for a computer).
- ► To search among bfs, we keep moving to a better **adjacent** bfs from the current one:

Definition 4 (Adjacent bases and bfs)

Two bases are adjacent if exactly one of their variables is different. Two bfs are adjacent if their associated bases are adjacent.

▶ Again, let's use a graph to get the idea.

			00000000	000000	000000000000000000000000000000000000000
--	--	--	----------	--------	---

Adjacent basic feasible solutions

- ► A pair of adjacent bfs corresponds to a pair of "adjacent" extreme points, i.e., extreme points that are on **the same edge**.
- ▶ Switching from a bfs to its adjacent bfs is **moving along an edge**.

Basis	Point	В	asic s	oluti	on
Da515	1 01110	x_1	x_2	x_3	x_4
$\{x_1, x_2\}$	A	2	2	0	0
$\{x_1, x_3\}$	B	3	0	3	0
$\{x_2, x_4\}$	E	0	3	0	3
$\{x_3, x_4\}$	F	0	0	6	6

A better way to search

- ▶ Given all these concepts, how would you search among bfs?
- At each bfs, move to an **adjacent** bfs that is **better**!
 - Around the current bfs, there should be some improving directions.
 - Otherwise, the bfs is optimal.
- Next we will introduce the simplex method, which utilize this idea in an elegant way.

Standard form B	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
00000000 0	000000000000000000000000000000000000000	•0000000000000000	00000000	000000	000000000000

Road map

- ▶ The standard form.
- Basic solutions.
- The simplex method.
- ▶ The tableau representation.
- Unbounded LPs.
- ▶ Infeasible LPs.

0000000 0000000000 000000000000000000000000000000000000	Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
	0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

The idea

- ▶ All we need is to search among bfs.
 - Geometrically, we search among extreme points.
 - Moving to an adjacent bfs is to move along an edge.
- ▶ Questions:
 - ▶ Which edge to move along?
 - When to stop moving?
- ▶ All these must be done with algebra rather than geometry.
- ► Algebraically, to move to an adjacent bfs, we need to **replace** one basic variable by a nonbasic variable.
 - E.g., moving from $B_1 = \{x_1, x_2, x_3\}$ to $B_2 = \{x_2, x_3, x_5\}$.
- ▶ There are two things to do:
 - ▶ Select one **nonbasic** variable to **enter** the basis, and
 - Select one **basic** variable to **leave** the basis.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	00000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

The idea

- Entering and leaving:
 - Selecting one nonbasic variable to enter means making it nonzero: Increasing its value from 0 to a positive value and become basic.
 - ▶ While this variable increases, we identify basic variables that decrease and stop when one hits 0. That variable **leaves** the basis and become **nonbasic**.
- We keep **changing the basis** until we find an optimal basis.
- ▶ Next let's know exactly how to run the simplex method in algebra.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	00000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

The simplex method

▶ To introduce the algebra of the simplex method, let's consider the following LP

and its standard form

		ompion moonou	rabicaus	Choonnaca hi s	Inteasible LI s
0000000 0000000	0000 00000	0000000000000000	00000000	000000	000000000000

System of equalities

▶ We need to keep track of the **objective value**.

- We want to keep improving our solution.
- We will use $z = 2x_1 + 3x_2$ to denote the objective value.
- ▶ The objective value will sometimes be called **the** *z* **value**.
- ▶ Once we keep in mind that (1) we are maximizing z and (2) all variables (except z) must be nonnegativie, the standard form is nothing but a system of three equalities:

- Note that $z = 2x_1 + 3x_2$ is expressed as $z 2x_1 3x_2 = 0$.
- ▶ This "constraint" (which actually represents the objective function) will be called the 0th constraint.
- ▶ We will repeatedly use Linear Algebra to solve the system.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

An initial bfs

- ▶ To start, we need to first have an **initial bfs**.
- ▶ Investigate the system in details:

- Selecting x_3 and x_4 definitely works!
- In the system, these two columns form an identity matrix: $A_B = I.^6$
- \blacktriangleright Moreover, in a standard form LP, the RHS b are nonnegative.
- Therefore, $x_B = A_B^{-1}b = Ib = b \ge 0$.

⁶For what kind of LPs does this identity matrix exist?

 Standard form
 Basic solutions
 The simplex method
 Tableaus
 Unbounded LPs
 Infeasible LPs

 00000000
 0000000000000
 0000000
 000000
 000000
 000000000000

Improving the current bfs

- Let us start from $x^1 = (0, 0, 6, 8)$ and $z_1 = 0$.
- ▶ To move, let's choose a nonbasic variable to enter. x_1 or x_2 ?
 - ► The **0th constraints** tells us that entering either variable makes z smaller: When one goes up, z goes down to maintain the equality.
 - For no reason, let's choose x_1 to enter.
- ▶ When to stop?
 - Now x_1 goes up from 0.
 - $(0,0,6,8) \to (1,0,5,6) \to (2,0,4,4) \to \cdots$. Note that x_2 remains 0.
 - We will stop at (4, 0, 2, 0), i.e., when x_4 becomes 0.
 - ▶ This is indicated by the **ratio** of the **RHS** and **entering column**: Because $\frac{8}{2} < \frac{6}{1}$, x_4 becomes 0 sooner than x_3 .
- We move to $x^2 = (4, 0, 2, 0)$ with $z_2 = 8$.

 Standard form
 Basic solutions
 The simplex method
 Tableaus
 Unbounded LPs
 Infeasible LPs

 00000000
 000000000000
 0000000
 0000000
 000000
 00000000000

Keep improving the current bfs

z	_	$2x_1$	_	$3x_2$					=	0
		x_1	+	$2x_2$	$^+$	x_3			=	6
		$2x_1$	+	x_2			+	x_4	=	8.

• Let's improve $x^2 = (4, 0, 2, 0)$ by moving to the next bfs.

- One of x_2 and x_4 may enter. Let's try to enter x_2 .
- When x_2 goes up and x_4 remains 0:
 - The 2nd row says x_2 can at most become 8 (and then x_1 becomes 0).
 - In the 1st row... how will x_1 and x_3 change?
- According to constraint 2, when x_2 goes up by 1 and x_4 remains 0, x_1 should decrease by $\frac{1}{2}$.
 - ▶ Therefore, according to constraint 1, when x_2 goes up by 1 "and" x_1 goes down by $\frac{1}{2}$, x_3 should go down by $\frac{3}{2}$.
 - Therefore, x_2 can be at most $\frac{4}{3}$. We reach $(\frac{10}{3}, \frac{4}{3}, 0, 0)$.
- Collectively, we should increase x_2 by $\min\{8, \frac{4}{3}\}$.
 - The z value becomes $z_3 = \frac{10}{3} \times 2 + \frac{4}{3} \times 3 = \frac{32}{2}$.
 - It does not becomes $z_2 + \frac{4}{3} \times 3$ as the basic variable x_1 also changes.

Keep improving the current bfs

z	_	$2x_1$	_	$3x_2$					=	0
		x_1	+	$2x_2$	$^+$	x_3			=	6
		$2x_1$	+	x_2			+	x_4	=	8.

- ▶ Note that what we did has two flaws.
- ▶ Regarding constraints:
 - When we increase the nonbasic variable x_2 , it may affect both basic variables x_1 and x_3 .
 - Because x_3 does not appear in constraint 2, we know how x_1 responds to the change of x_2 .
 - We need to consider that to see how x_3 responds to the change of x_2 .
- ▶ Regarding the objective function:
 - When we increase the nonbasic variable x_2 , it affects basic variables x_1 and x_3 .
 - Because x_1 is in constraint 0, z is affected by both x_1 and x_1 .
- ▶ How to do these calculations with thousands of variables and constraints?

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Keep improving the current bfs

▶ An easier way is to **update the system** before the 2nd move.

- ▶ To make each of rows 1 to *n* contains **exactly one** basic variable.
- ▶ To make row 0 contains **no** basic variable.
- ▶ In other words, for the **basic columns**:
 - We want an **identity matrix** in rows 1 to *n*.
 - We want a **zero vector** in row 0.

Improving the current bfs (the 2nd attempt)

▶ Recall that for the system

we start from $x^1 = (0, 0, 6, 8)$ with $z_1 = 0$.

- ▶ For the basic columns (the 3rd and 4th ones), indeed we have the identity matrix and zeros.
- Then we know x_1 enters and x_4 leaves.
 - The basis becomes $\{x_1, x_3\}$.
 - We need to update the system to

$$z + 2x_{1} + 2x_{2} + x_{3} + 2x_{4} = 0 +$$

► How? Elementary row operations!

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	0000000000000

Updating the system

► Starting from:

- Multiply (2) by $\frac{1}{2}$: $x_1 \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4$.
- Multiply (2) by -1 and then add it into (1): $\frac{3}{2}x_2 + x_3 \frac{1}{2}x_4 = 2$.
- Multiply (2) by 1 and then add it into (0): $z 2x_2 + x_4 = 8$.
- ▶ Collectively, the system becomes

$$z - 2x_2 + x_4 = 8 \quad (0)$$

$$\frac{3}{2}x_2 + x_3 - \frac{1}{2}x_4 = 2 \quad (1)$$

$$x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4 = 4. \quad (2)$$

• Updating the system also gives us the objective value $z_2 = 8$ and the current bfs $x^2 = (4, 0, 2, 0)$.

Improving the current bfs (finally!)

▶ Given the updated system

z

we now know how to do the next iteration.

- We are at $x^2 = (4, 0, 2, 0)$ with $z_2 = 8$.
- One of x_2 and x_4 may enter.
- If x_2 enters, z will go up. Good!
- If x_4 enters, z will go down. Bad.

• Let x_2 enter:

- ▶ Row 1: When x_2 goes up, x_3 goes down. x_2 can be as large as $\frac{2}{3/2} = \frac{4}{3}$.
- Row 2: When x_2 goes up, x_1 goes down. x_2 can be as large as $\frac{4}{1/2} = 8$.
- So x_3 becomes 0 sooner than x_1 . x_3 leaves the basis.
- The basic variables become x_1 and x_2 . Let's update again.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	0000000000000

Improving once more

▶ Given the system

z

z

we now need to update it to fit the new basis $\{x_1, x_2\}$.

- Multiply (1) by $\frac{2}{3}$: $x_2 + \frac{2}{3}x_3 \frac{1}{3}x_4 = \frac{4}{3}$.
- Multiply (the updated) (1) by $-\frac{1}{2}$ and add it to (2).
- ▶ Multiply (the updated) (1) by 2 and add it to (0).

► We get

$$+ \frac{4}{3}x_3 + \frac{1}{3}x_4 = \frac{32}{3} \quad (0)$$

$$x_2 + \frac{2}{3}x_3 - \frac{1}{3}x_4 = \frac{4}{3} \quad (1)$$

$$x_1 - \frac{1}{3}x_3 + \frac{2}{3}x_4 = \frac{10}{3} \quad (2)$$

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

No more improvement!

z

▶ The system

$$+ \frac{4}{3}x_3 + \frac{1}{3}x_4 = \frac{32}{3} \quad (0)$$

$$x_2 + \frac{2}{3}x_3 - \frac{1}{3}x_4 = \frac{4}{3} \quad (1)$$

$$x_1 - \frac{1}{3}x_3 + \frac{2}{3}x_4 = \frac{10}{3} \quad (2)$$

tells us that the new bfs is $x^3 = (\frac{10}{3}, \frac{4}{3}, 0, 0)$ with $z_3 = \frac{32}{3}$.

- ▶ Updating the system also gives us the new bfs and its objective value.
- ▶ Now... no more improvement is needed!
 - Entering x_3 makes things worse (z must go down).
 - Entering x_4 also makes things worse.
- x^3 is an optimal solution.⁷ We are done!

⁷This is indeed true, though a rigorous proof is omitted.

Visualizing the iterations

- Let's visualize this example and relate bfs with extreme points.
 - The initial bfs corresponds to (0, 0).
 - After one iteration, we move to (4, 0).
 - After two iterations, we move to $(\frac{10}{3}, \frac{4}{3})$, which is optimal.
- Please note that we move along edges to search among extreme points!

00000000 00000000000 000000000000 0000000 000000 00000000	Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
	0000000	00000000000000	00000000000000000	00000000	000000	000000000000

Summary

- ▶ To run the simplex method:
 - ▶ Find an initial bfs with its basis.⁸
 - Among those nonbasic variables with positive coefficients in the 0th row,⁹ choose one to enter.¹⁰
 - ▶ If there is none, terminate and report the current bfs as optimal.
 - According to the ratios from the basic and RHS columns, decide which basic variable should leave.¹¹
 - Find a new basis.
 - ▶ Make the system fit the requirements for basic columns:
 - Identity matrix in constraints (1st to *m*th row).
 - Zeros in the objective function (0th row).
 - Repeat.

¹¹What if there is a tie? What if the denominator is 0 or negative?

⁸How to find one?

⁹Positive coefficients for a minimization problem; negative for maximization. ¹⁰What if there are multiple?

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	•0000000	000000	000000000000

Road map

- ▶ The standard form.
- Basic solutions.
- ▶ The simplex method.
- ▶ The tableau representation.
- Unbounded LPs.
- ▶ Infeasible LPs.

Standard form 00000000	Basic solutions	The simplex method 000000000000000000000000000000000000	Tableaus 0●000000	Unbounded LPs 000000	Infeasible LPs 0000000000000

The tableau representation

- ▶ We typically omit variables when updating those systems.
- We organize coefficients into **tableaus**.
 - As the column with z never changes, we do not include it in a tableau.
- ▶ For our example, the initial system

can be expressed as

-2	-3	0	0	0
1	2	1	0	$x_3 = 6$
2	1	0	1	$x_4 = 8$

- The basic columns have zeros in the 0th row and an identity matrix in the other rows.
- ▶ The identity matrix associates each row with a basic variable.
- ► A negative number in the 0th row of a nonbasic column means that variable can enter.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	00000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Using tableaus rather than systems

~	$-2r_{1}$	_	$3r_2$				_	0		2 –	·3 0	0	0
~	x_1	+	$2x_2$	+ :	r_3		=	6	1		2 1	0	$x_3 = 6$
	$2x_1$	+	x_2			$+ x_4$	1 =	8	2] :	1 0	1	$x_4 = 8$
							\downarrow						
z		- 2	x_2		+	x_4	=	8	0	-2	0	1	8
	-	$+ \frac{3}{2}$	x_2	$+ x_3$	_	$\frac{1}{2}x_4$	=	2	0	$\frac{3}{2}$	1	$-\frac{1}{2}$	$x_3 = 2$
	x_1 -	$+ \frac{1}{2}$	x_2		+	$\frac{1}{2}x_4$	=	4	1	$\frac{1}{2}$	0	$\frac{1}{2}$	$x_1 = 4$
							\downarrow						
z			+	$\frac{4}{3}x_{3}$	+	$\frac{1}{3}x_{4}$	=	$\frac{32}{3}$	0	0	$\frac{4}{3}$	$\frac{1}{3}$	$\frac{32}{3}$
		x_2	+	$\frac{2}{3}x_{3}$	_	$\frac{1}{3}x_4$	=	$\frac{4}{3}$	0	1	$\frac{2}{3}$	$-\frac{1}{3}$	$x_2 = \frac{4}{3}$
	x_1		-	$\frac{1}{3}x_3$	+	$\frac{2}{3}x_{4}$	=	$\frac{10}{3}$	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	$x_1 = \frac{10}{3}$

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

The second example

▶ Consider another example:

▶ The standard form is

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000		0000●000	000000	0000000000000

The first iteration

• We prepare the initial tableau. We have $x^1 = (0, 0, 4, 8, 3)$ and $z_1 = 0$.

-1	0	0	0	0	0
2	-1	1	0	0	$x_3 = 4$
2	1	0	1	0	$x_4 = 8$
0	1	0	0	1	$x_5 = 3$

- For this maximization problem, we look for negative numbers in the 0th row. Therefore, x_1 enters.
 - Those numbers in the 0th row are called **reduced costs**.
 - The 0th row is $z x_1 = 0$. Increasing x_1 can increase z.
- "Dividing the RHS column by the entering column" tells us that x_3 should leave (it has the minimum ratio).¹²
 - ▶ This is called the **ratio test**. We **always** look for the smallest ratio.

¹²The 0 in the 3rd row means that increasing x_1 does not affect x_5 .

The Simplex Method

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000		00000●00	000000	0000000000000

The first iteration

▶ x_1 enters and x_3 leaves. The next tableau is found by **pivoting** at 2:

-1	0	0	0	0	0		0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2
2	$^{-1}$	1	0	0	$x_3 = 4$	\rightarrow	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$
2	1	0	1	0	$x_4 = 8$		0	2	-1	1	0	$x_4 = 4$
0	1	0	0	1	$x_5 = 3$		0	1	0	0	1	$x_5 = 3$

- The new bfs is $x^2 = (2, 0, 0, 4, 3)$ with $z_2 = 2$.
- ► Continue?
 - There is a negative reduced cost in the 2nd column: x_2 enters.
- ▶ Ratio test:
 - ► That -¹/₂ in the 1st row shows that increasing x₂ makes x₁ larger. Row 1 does not participate in the ratio test.
 - ▶ For rows 2 and 3, row 2 wins (with a smaller ratio).

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

The second iteration

- ▶ x_2 enters and x_4 leaves. We pivot at 2.
- ▶ The second iteration is

• The third bfs is $x^3 = (3, 2, 0, 0, 1)$ with $z_3 = 3$.

- ▶ It is optimal (why?).
- Typically we write the optimal solution we find as x^* and optimal objective value as z^* .

Visualizing the solution process

▶ The three basic feasible solutions we obtain are

•
$$x^1 = (0, 0, 4, 8, 3).$$

- ▶ $x^2 = (2, 0, 0, 4, 3).$
- ▶ $x^3 = x^* = (3, 2, 0, 0, 1).$

Do they fit our graphical approach?

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	00000	000000000000

Road map

- ▶ The standard form.
- Basic solutions.
- ▶ The simplex method.
- ▶ The tableau representation.
- Unbounded LPs.
- ▶ Infeasible LPs.

Identifying unboundedness

- ▶ When is an LP **unbounded**?
- ▶ An LP is unbounded if:
 - There is an improving direction.
 - ▶ Along that direction, we may move forever.
- ▶ When we run the simplex method, this can be easily checked in a simplex tableau.
- Consider the following example:

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000		00000000	00●000	0000000000000

Unbounded LPs

▶ The standard form is:

▶ The first iteration:

-1	0	0	0	0		0	-1	1	0	1
1	-1	1	0	$x_3 = 1$	\rightarrow	1	-1	1	0	$x_1 = 1$
2	-1	0	1	$x_4 = 4$		0	1	-2	1	$x_4 = 2$

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000		00000000	000000	0000000000000

Unbounded LPs

▶ The second iteration:

0	-1	1	0	1		0	0	-1	1	3
1	-1	1	0	$x_1 = 1$	\rightarrow	1	0	-1	1	$x_1 = 3$
0	1	-2	1	$x_4 = 2$		0	1	-2	1	$x_2 = 2$

▶ How may we do the third iteration? The **ratio test** fails!

- Only rows with positive denominators participate in the ratio test.
- ▶ Now all the denominators are nonpositive! Which variable to leave?

▶ No one should leave: Increasing x_3 makes x_1 and x_2 become larger.

• Row 1:
$$x_1 - x_3 + x_4 = 3$$
.

• Row 2: $x_2 - 2x_3 + x_4 = 2$.

▶ The direction is thus an **unbounded improving direction**.

Unbounded improving directions

• At (3,2), when we enter x_3 , we move along the rightmost edge. Geometrically, both nonbinding constraints $x_1 \ge 0$ and $x_2 \ge 0$ are "behind us".

The	Simp	lex	Method	
THC	Dimp.	ICA.	meenou	

Detecting unbounded LPs

▶ For a minimization LP, whenever we see any column in any tableau

such that $\bar{c}_j > 0$ and $d_i \leq 0$ for all i = 1, ..., m, we may stop and conclude that this LP is unbounded.

- $\bar{c}_j > 0$: This is an improving direction.
- ▶ $d_i \leq 0$ for all i = 1, ..., m: This is an unbounded direction.

▶ What is the unbounded condition for a **maximization** problem?

Standard form	Basic solutions	The simplex method 000000000000000000000000000000000000	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000		00000000	000000	•00000000000

Road map

- ▶ The standard form.
- Basic solutions.
- ▶ The simplex method.
- ▶ The tableau representation.
- ▶ Unbounded LPs.
- ► Infeasible LPs.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	00000000000

Feasibility of an LP

 \blacktriangleright When an LP

$$\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax \leq b\\ & x > 0 \end{array}$$

satisfies $b \ge 0$, finding a bfs for its standard form

 $\begin{array}{ll} \min & c^T x \\ \text{s.t.} & Ax + Iy = b \\ & x, y \ge 0, \end{array}$

is trivial.

- We may form a feasible basis with all the slack variables y.
- What if there are some "=" or " \geq " constraints?

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000		00000000	000000	000000000000

Feasibility of an LP

▶ For example, given an LP

whose standard form is

it is nontrivial to find a feasible basis (if there is one).

The two-phase implementation

- ► To find an initial bfs (or show that there is none), we may apply the **two-phase implementation**.
- Given a standard form LP (P), we construct a **phase-I LP** (Q):¹³

(P) min
$$c^T x$$

 $x \ge 0$
min $1^T y$
(Q) min $1^T y$
 $x \ge 0$
min $x \ge 0$
min $x \ge 0$
min $x \ge 0$
min $x \ge 0$

• (Q) has a trivial bfs (x, y) = (0, b), so we can apply the simplex method on (Q). But so what?

Proposition 1

(P) is feasible if and only if (Q) has an optimal bfs $(x, y) = (\bar{x}, 0)$. In this case, \bar{x} is a bfs of (P).

¹³Even if in (P) we have a maximization objective function, (Q) is still the same.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	00000000000000000

The two-phase implementation

- After we solve (Q), either we know (P) is infeasible or we have a feasible basis of (P).
- ▶ In the latter case, we can recover the objective function of the original (P) to get a **phase-II LP**.
 - "The phase-II LP" is nothing but the original (P).
 - ▶ Phase I for a **feasible** solution and phase II for an **optimal** solution.
- ▶ Regarding those added variables:
 - ► They are **artificial variables** and have no physical meaning. They are created only for checking feasibility.
 - ▶ If a constraint already has a variable that can be included in a trivial basis, we do not need to add an artificial variable in that constraint.
 - ▶ This happens to those " \leq " constraints (if the RHS is nonnegative).
- ► We then adjust the tableau according to the initial basis and continue applying the simplex method on the phase-II LP.

Standard form	Basic solutions	The simplex method 000000000000000000000000000000000000	Tableaus	Unbounded LPs	Infeasible LPs
00000000	0000000000000		00000000	000000	000000000000

Example 1: Phase I

▶ Consider an LP

which has no trivial bfs (due to the " \geq " constraint).

▶ Its Phase-I standard form LP is

• We need only one artificial variable x_5 . x_3 and x_4 are slack variables.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	0000000000000	000000000000000000000000000000000000000	00000000	000000	000000000000

Example 1: preparing the initial tableau

▶ Let's try to solve the Phase-I LP. First, let's prepare the initial tableau:

0	0	0	0	-1	0
2	1	-1	0	1	$x_5 = 6$
1	2	0	1	0	$x_4 = 6$

- ▶ Is this a valid tableau? No!
 - ▶ For all basic columns (in this case, columns 4 and 5), the 0th row should contain 0.
 - ▶ So we need to first **adjust the 0th row** with elementary row operations.

Standard form	Basic solutions	The simplex method	Tableaus	Unbounded LPs	Infeasible LPs
0000000	00000000000000	000000000000000000000000000000000000000	00000000	000000	0000000000000

Example 1: preparing the initial tableau

▶ Let's adjust row 0 by adding row 1 to row 0.

- ▶ Now we have a valid initial tableau to start from!
- The current bfs is $x^0 = (0, 0, 0, 6, 6)$, which corresponds to an **infeasible** solution to the original LP.
 - We know this because there are positive artificial variables.

Example 1: solving the Phase-I LP

▶ Solving the Phase-I LP takes only one iteration:

2	1	-1	0	0	6		0	0	0	0	0
2	1	$^{-1}$	0	1	$x_5 = 6$	\rightarrow	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
1	2	0	1	0	$x_4 = 6$		0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_4 = 3$

- ▶ Whenever an artificial variable leaves the basis, we will not need to enter it again. Therefore, we may remove that column to save calculations.
- ▶ As we can remove all artificial variables, the original LP is feasible.
- A feasible basis for the original LP is $\{x_1, x_4\}$.

Example 1: solving the Phase-II LP

- ▶ Now let's construct the Phase-II LP.
- Step 1: put the original objective function "max $x_1 + x_2$ " back:

-1	-1	0	0	0
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_4 = 3$

- ▶ Is this a valid tableau? No!
 - Column 1, which should be basic, contains a nonzero number in the 0th row. It must be adjusted to 0.
- ▶ Before we run iterations, let's adjust the 0th row again.

Example 1: solving the Phase-II LP

▶ Let's fix the 0th row and then run two iterations.

	-1	-1	. 0	0	0	adjust	_	0	$-\frac{1}{2}$		$\frac{1}{2}$	0	3
_	1 0	$\frac{\frac{1}{2}}{\frac{3}{2}}$	$-\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$x_1 = 3$ $x_4 = 3$	\rightarrow		1 0	$\frac{\frac{1}{2}}{\frac{3}{2}}$	_	$\frac{1}{2}$	0 1	$x_1 = 3$ $x_4 = 3$
	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	4		0	1	0	1		6	
Y	1	0	$-\frac{2}{3}$	$-\frac{1}{3}$	$x_1 = 2$	\rightarrow	1	2	0	1	x_1		6
	0	1	$\frac{1}{3}$	$\frac{2}{3}$	$x_2 = 2$		0	3	1	2	$ x_3 $	$_{3} = 0$	6

• The optimal bfs is (6, 0, 6, 0).

Example 1: visualization

- x⁰ is infeasible (the artificial variable x₅ is positive).
- x¹ is the initial bfs (as a result of Phase I).
- x³ is the optimal bfs (as a result of Phase II).