Operations Research, Spring 2017 Suggested Solution for Pre-lecture Problems for Lecture 3

Solution providers: Share Lin Department of Information Management National Taiwan University

1. (a) The standard form is

$$\begin{array}{ll} \max & 5x_1 + 3x_2 \\ \text{s.t.} & x_1 + x_2 + x_3 = 16 \\ & x_1 + 4x_2 + x_4 = 20 \\ & x_2 + x_5 = 8 \\ & x_i \geq 0 \quad \forall i = 1, ..., 5. \end{array}$$

(b) Since in the standard form we have five variables and three constraints, there should be three basic variables and two nonbasic variables in a basic solution. There are at most ten basic solutions, which are listed in the table below. The basic feasible solutions are $(\frac{44}{3}, \frac{4}{3}, 0, 0, \frac{20}{3})$, (16, 0, 0, 4, 8), (0, 5, 11, 0, 3), and (0, 0, 16, 20, 8).

x_1	x_2	x_3	x_4	x_5	basis
-12	8	20	0	0	$\{x_1, x_2, x_3\}$
8	8	0	-20	0	$\{x_1, x_2, x_4\}$
$\frac{44}{3}$	$\frac{4}{3}$	0	0	$\frac{20}{3}$	$\{x_1, x_2, x_5\}$
N/A	0	N/A	N/A	0	$\{x_1, x_3, x_4\}$
20	0	-4	0	8	$\{x_1, x_3, x_5\}$
16	0	0	4	8	$\{x_1, x_4, x_5\}$
0	8	8	-12	0	$\{x_2, x_3, x_4\}$
0	5	11	0	3	$\{x_2, x_3, x_5\}$
0	16	0	-44	-8	$\{x_2, x_4, x_5\}$
0	0	16	20	8	$\{x_3, x_4, x_5\}$

(c) The one-to-one mapping between bfs and extreme points is shown in Figure 1.

Figure 1: Graphical solution for Problem 1c

2. The initial tableau is

We run two iterations to get

-5	-3	0	0	0	0		0	2	5	0	0	80
1	1	1	1	0	$x_3 = 16$,	1	1	1	0	0	$x_1 = 16$
1	4	0	0	1	$x_4 = 20$	\rightarrow	0	3	-1	1	0	$x_4 = 4$
0	1	0	0	1	$x_5 = 8$		0	1	0	0	1	$x_5 = 8$

An optimal solution to the original LP is $(x_1^*, x_2^*) = (16, 0)$ with objective value $z^* = 80$. The route is from (0,0) to (16,0).

3. (a) Let x_1 and x_2 be the number of tables and chairs produced, respectively. The standard form is

$$\begin{aligned} & \max \quad 140x_1 + 100x_2 - 40(3x_1 + 2x_2) \\ & \text{s.t.} \quad 3x_1 + 2x_2 + x_3 = 15 \\ & \frac{1}{0.6}x_1 + x_2 + x_4 = 12 \\ & -2x_1 + x_2 + x_5 = 0 \\ & x_i \geq 0 \quad \forall i = 1, ..., 5. \end{aligned}$$

Since in the standard form we have five variables and three constraints, there should be three basic variables and two nonbasic variables in a basic solution. There are at most ten basic solutions, which are listed in the table below. In this problem, there are eight basic solutions. The basic feasible solutions are $(\frac{15}{7}, \frac{30}{7}, 0, \frac{29}{7}, 0), (0, 0, 15, 12, 0),$ and $(5, 0, 0, \frac{11}{3}, 10)$.

x_1	x_2	x_3	x_4	x_5	basis
$\frac{36}{11}$	$\frac{72}{11}$	$-\frac{87}{11}$	0	0	$\{x_1, x_2, x_3\}$
$\frac{15}{7}$	$\frac{30}{7}$	0	$\frac{29}{7}$	0	$\{x_1, x_2, x_4\}$
27	-33	0	0	87	$\{x_1, x_2, x_5\}$
0	0	15	12	0	$\{x_1, x_3, x_4\}$
$\frac{36}{5}$	0	$-\frac{33}{5}$	0	$\frac{72}{5}$	$\{x_1, x_3, x_5\}$
5	0	0	$\frac{11}{3}$	10	$\{x_1, x_4, x_5\}$
0	0	15	12	0	$\{x_2, x_3, x_4\}$
0	12	-9	0	-12	$\{x_2, x_3, x_5\}$
0	$\frac{15}{2}$	0	$\frac{9}{2}$	$-\frac{15}{2}$	$\{x_2, x_4, x_5\}$
0	0	15	12	0	$\{x_3, x_4, x_5\}$

(b) The initial tableau is

2

By using the simplex method, we get

An optimal solution to the original LP is $(x_1^*, x_2^*) = (\frac{15}{7}, \frac{30}{7})$ with objective value $z^* = \frac{900}{7}$.