Operations Research, Spring 2017
 Suggested Solution for Pre-lecture Problems for Lecture 3

Solution providers: Share Lin
Department of Information Management National Taiwan University

1. (a) The standard form is

$$
\begin{aligned}
\max & 5 x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=16 \\
& x_{1}+4 x_{2}+x_{4}=20 \\
& x_{2}+x_{5}=8 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{aligned}
$$

(b) Since in the standard form we have five variables and three constraints, there should be three basic variables and two nonbasic variables in a basic solution. There are at most ten basic solutions, which are listed in the table below. The basic feasible solutions are ($\left.\frac{44}{3}, \frac{4}{3}, 0,0, \frac{20}{3}\right)$, $(16,0,0,4,8),(0,5,11,0,3)$, and $(0,0,16,20,8)$.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	basis
-12	8	20	0	0	$\left\{x_{1}, x_{2}, x_{3}\right\}$
8	8	0	-20	0	$\left\{x_{1}, x_{2}, x_{4}\right\}$
$\frac{44}{3}$	$\frac{4}{3}$	0	0	$\frac{20}{3}$	$\left\{x_{1}, x_{2}, x_{5}\right\}$
N / A	0	$\mathrm{~N} / \mathrm{A}$	N / A	0	$\left\{x_{1}, x_{3}, x_{4}\right\}$
20	0	-4	0	8	$\left\{x_{1}, x_{3}, x_{5}\right\}$
16	0	0	4	8	$\left\{x_{1}, x_{4}, x_{5}\right\}$
0	8	8	-12	0	$\left\{x_{2}, x_{3}, x_{4}\right\}$
0	5	11	0	3	$\left\{x_{2}, x_{3}, x_{5}\right\}$
0	16	0	-44	-8	$\left\{x_{2}, x_{4}, x_{5}\right\}$
0	0	16	20	8	$\left\{x_{3}, x_{4}, x_{5}\right\}$

(c) The one-to-one mapping between bfs and extreme points is shown in Figure 1.

Figure 1: Graphical solution for Problem 1c
2. The initial tableau is

$$
\begin{array}{ccccc|c}
-5 & -3 & 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 1 & 0 & x_{3}=16 \\
1 & 4 & 0 & 0 & 1 & x_{4}=20 \\
0 & 1 & 0 & 0 & 1 & x_{5}=8
\end{array}
$$

We run two iterations to get

-5	-3	0	0	0	0							
1	1	1	1	0	$x_{3}=16$							
1	4	0	0	1	$x_{4}=20$							
0	1	0	0	1	$x_{5}=8$	$\rightarrow \quad$	0	2	5	0	0	80
:---:	:---:	:---:	:---:	:---:	:---:							
1	1	1	0	0	$x_{1}=16$							
0	3	-1	1	0	$x_{4}=4$							
0	1	0	0	1	$x_{5}=8$							

An optimal solution to the original LP is $\left(x_{1}^{*}, x_{2}^{*}\right)=(16,0)$ with objective value $z^{*}=80$. The route is from $(0,0)$ to $(16,0)$.
3. (a) Let x_{1} and x_{2} be the number of tables and chairs produced, respectively. The standard form is

$$
\begin{aligned}
\max & 140 x_{1}+100 x_{2}-40\left(3 x_{1}+2 x_{2}\right) \\
\text { s.t. } & 3 x_{1}+2 x_{2}+x_{3}=15 \\
& \frac{1}{0.6} x_{1}+x_{2}+x_{4}=12 \\
& -2 x_{1}+x_{2}+x_{5}=0 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{aligned}
$$

Since in the standard form we have five variables and three constraints, there should be three basic variables and two nonbasic variables in a basic solution. There are at most ten basic solutions, which are listed in the table below. In this problem, there are eight basic solutions. The basic feasible solutions are $\left(\frac{15}{7}, \frac{30}{7}, 0, \frac{29}{7}, 0\right),(0,0,15,12,0)$, and $\left(5,0,0, \frac{11}{3}, 10\right)$.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	basis
$\frac{36}{11}$	$\frac{72}{11}$	$-\frac{87}{11}$	0	0	$\left\{x_{1}, x_{2}, x_{3}\right\}$
$\frac{15}{7}$	$\frac{30}{7}$	0	$\frac{29}{7}$	0	$\left\{x_{1}, x_{2}, x_{4}\right\}$
27	-33	0	0	87	$\left\{x_{1}, x_{2}, x_{5}\right\}$
0	0	15	12	0	$\left\{x_{1}, x_{3}, x_{4}\right\}$
$\frac{36}{5}$	0	$-\frac{33}{5}$	0	$\frac{72}{5}$	$\left\{x_{1}, x_{3}, x_{5}\right\}$
5	0	0	$\frac{11}{3}$	10	$\left\{x_{1}, x_{4}, x_{5}\right\}$
0	0	15	12	0	$\left\{x_{2}, x_{3}, x_{4}\right\}$
0	12	-9	0	-12	$\left\{x_{2}, x_{3}, x_{5}\right\}$
0	$\frac{15}{2}$	0	$\frac{9}{2}$	$-\frac{15}{2}$	$\left\{x_{2}, x_{4}, x_{5}\right\}$
0	0	15	12	0	$\left\{x_{3}, x_{4}, x_{5}\right\}$

(b) The initial tableau is

-20	-20	0	0	0	0
3	2	1	0	0	$x_{3}=15$
$\frac{5}{3}$	1	0	1	0	$x_{4}=12$
-2	1	0	0	1	$x_{5}=0$

By using the simplex method, we get

0	$-\frac{20}{3}$	$\frac{20}{3}$	0	0	100
1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$x_{1}=5$
0	$-\frac{1}{9}$	$-\frac{5}{9}$	1	0	$x_{4}=\frac{11}{3}$
0	$\frac{7}{3}$	$\frac{2}{3}$	0	1	$x_{5}=10$
0	0	$\frac{60}{7}$	0	$\frac{20}{7}$	$\frac{900}{7}$
1	0	$\frac{1}{7}$	0	$-\frac{2}{7}$	$x_{1}=\frac{15}{7}$
0	0	$-\frac{11}{21}$	1	$\frac{1}{21}$	$x_{4}=\frac{29}{7}$
0	1	$\frac{2}{7}$	0	$\frac{3}{7}$	$x_{2}=\frac{30}{7}$

An optimal solution to the original LP is $\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{15}{7}, \frac{30}{7}\right)$ with objective value $z^{*}=\frac{900}{7}$.

