Operations Research

Linear Programming Duality

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Introduction

- For business, we study how to formulate LPs.
- For engineering, we study how to solve LPs.
- For science, we study mathematical properties of LPs.
- We will study Linear Programming duality.
- It still has important applications.

Road map

- Primal-dual pairs.
- Duality theorems.
- Shadow prices.

Upper bounds of a maximization LP

- Consider the following LP

$$
\begin{array}{cc}
z^{*}=\max & 4 x_{1} \\
\text { s.t. } & x_{1}+2 x_{2}+8 x_{3} \\
& 2 x_{1}+3 x_{3} \leq 6 \\
& x_{2}+2 x_{3} \leq 4 \\
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

- Suppose the LP is very hard to solve.
- Your friend proposes a solution $\hat{x}=\left(\frac{1}{2}, 1,1\right)$ with $\hat{z}=15$.
- If we know z^{*}, we may compare \hat{z} with z^{*}.
- How to evaluate the performance of \hat{x} without solving the LP?
- If we can find an upper bound of z^{*}, that works!
- z^{*} cannot be greater than the upper bound.
- So if \hat{z} is close to the upper bound, \hat{x} is quite good. ${ }^{1}$
${ }^{1}$ You know 97 is quite high without knowing the highest in this class.

Upper bounds of a maximization LP

- How to find an upper bound of z^{*} for

$$
\begin{aligned}
& z^{*}=\max 4 x_{1}+5 x_{2}+8 x_{3} \\
& \begin{aligned}
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
2 x_{1} & \leq x_{2}+2 x_{3} \leq 4
\end{aligned} \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 \text { ? }
\end{aligned}
$$

- How about this: Multiply the first constraint by 2 , multiply the second constraint by 1 , and then add them together:

$$
\begin{aligned}
& 2\left(x_{1}+2 x_{2}+3 x_{3}\right)+\left(2 x_{1}+x_{2}+2 x_{3}\right) \leq 2 \times 6+4 \\
\Leftrightarrow & 4 x_{1}+5 x_{2}+8 x_{3} \leq 16
\end{aligned}
$$

- Compare this with the objective function, we know $z^{*} \leq 16$.
- Maybe z^{*} is exactly 16 (and the upper bound is tight). However, we do not know it here.
- $\hat{z}=15$ is close to $z^{*}=16$, so \hat{x} is quite good.

Upper bounds of a maximization LP

- How to find an upper bound of z^{*} for this one?

$$
\begin{array}{cc}
z^{*}=\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

- 16 is also an upper bound:

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+8 x_{3} \\
\leq & 4 x_{1}+5 x_{2}+8 x_{3} \quad\left(\text { because } x_{1} \geq 0, x_{2} \geq 0\right) \\
= & 2\left(x_{1}+2 x_{2}+3 x_{3}\right)+\left(2 x_{1}+x_{2}+2 x_{3}\right) \\
\leq & 2 \times 6+4=16 .
\end{aligned}
$$

- It is quite likely that 16 is not a tight upper bound and there is a better one. How to improve our upper bound?

Better upper bounds?

$$
\begin{aligned}
& z^{*}=\max 3 x_{1}+4 x_{2}+8 x_{3} \\
& \text { s.t. } \begin{aligned}
x_{1} & +2 x_{2}+3 x_{3} \leq 6 \\
2 x_{1} & \leq x_{2}+2 x_{3} \leq 4
\end{aligned} \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 \text {. }
\end{aligned}
$$

- Changing coefficients multiplied on the two constraints modifies the proposed upper bound.
- Different coefficients result in different linear combinations.
- Let's call the two coefficients y_{1} and y_{2}, respectively:

x_{1}	+	$2 x_{2}$	+	$3 x_{3}$	$\leq 6\left(\times y_{1}\right)$	
$2 x_{1}$	+	x_{2}	+	$2 x_{3}$	$\leq 4\left(\times y_{2}\right)$	
$\left(y_{1}+2 y_{2}\right) x_{1}$	+	$\left(2 y_{1}+y_{2}\right) x_{2}$	+	$\left(3 y_{1}+2 y_{2}\right) x_{3}$	\leq	$6 y_{1}+4 y_{2}$

- We need $y_{1} \geq 0$ and $y_{2} \geq 0$ to preserve the " \leq ".
- When do we have $z^{*} \leq 6 y_{1}+4 y_{2}$?

Looking for the lowest upper bound

- So we look for two variables y_{1} and y_{2} such that:
- $y_{1} \geq 0$ and $y_{2} \geq 0$.
- $3 \leq y_{1}+2 y_{2}, 4 \leq 2 y_{1}+y_{2}$, and $8 \leq 3 y_{1}+2 y_{2}$.
- Then $z^{*} \leq 6 y_{1}+4 y_{2}$.
- To try our best to look for an upper bound, we minimize $6 y_{1}+4 y_{2}$. We are solving another LP!
- We call the original LP the primal LP and the new one its dual LP.
- This idea applies to any LP. Let's see more examples.

Nonpositive or free variables

- Suppose variables are not all nonnegative:

$$
\begin{array}{cc}
z^{*}=\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{array}
$$

- If we want

$$
\begin{array}{rrrrr}
3 x_{1} & + & 4 x_{2} & + & 8 x_{3} \\
\leq & \left(y_{1}+2 y_{2}\right) x_{1} & + & \left(2 y_{1}+y_{2}\right) x_{2} & + \\
\left(3 y_{1}+2 y_{2}\right) x_{3}
\end{array}
$$

now we need

$$
\begin{array}{rll}
y_{1}+2 y_{2} & \geq 3 & \text { because } x_{1} \geq 0 \\
2 y_{1}+y_{2} & \leq 4 & \text { because } x_{2} \leq 0, \text { and } \\
3 y_{1}+2 y_{2} & =8 & \text { because } x_{3} \text { is free }
\end{array}
$$

Nonpositive or free variables

- So the primal and dual LPs are

$$
\begin{array}{rcl}
\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4
\end{array} \text { and } \begin{array}{rlrl}
\min \quad 6 y_{1} & +4 y_{2} \\
\text { s.t. } & y_{1} & +2 y_{2} & \geq 3 \\
2 y_{1} & +y_{2} \leq 4 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{array}
$$

- Some observations:
- Primal max \Rightarrow Dual min.
- Primal objective \Rightarrow Dual RHS.
- Primal RHS \Rightarrow Dual objective.
- Moreover:
- Primal " ≥ 0 " variable \Rightarrow Dual " \geq " constraint.
- Primal " ≤ 0 " variable \Rightarrow Dual " \leq " constraint.
- Primal free variable \Rightarrow Dual " $=$ " constraint.
- What if we have " \geq " or "=" primal constraints?

No-less-than and equality constraints

- Suppose constraints are not all " \leq ":

$$
\begin{array}{rc}
z^{*}=\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \geq 6 \\
& 2 x_{1}+x_{2}+2 x_{3}=4 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{array}
$$

- To obtain

$$
y_{1}\left(x_{1}+2 x_{2}+3 x_{3}\right)+y_{2}\left(2 x_{1}+x_{2}+2 x_{3}\right) \leq 6 y_{1}+4 y_{2}
$$

we now need $y_{1} \leq 0 . y_{2}$ can be of any sign (i.e., free).

No-less-than and equality constraints

- So the primal and dual LPs are

$$
\begin{aligned}
& y_{1} \leq 0, y_{2} \text { urs. }
\end{aligned}
$$

- Some more observations:
- Primal " \leq " constraint \Rightarrow Dual " ≥ 0 " variable.
- Primal " \geq " constraint \Rightarrow Dual " ≤ 0 " variable.
- Primal " $=$ " constraint \Rightarrow Dual free variable.

The general rule

- In general, if the primal LP is

$$
\begin{array}{rrl}
\max & c_{1} x_{1} & +c_{2} x_{2}+c_{3} x_{3} \\
\\
\text { s.t. } & A_{11} x_{1}+A_{12} x_{2}+A_{13} x_{3} \geq b_{1} \\
& A_{21} x_{1}+A_{22} x_{2}+A_{23} x_{3} \leq b_{2} \\
& A_{31} x_{1}+A_{32} x_{2}+A_{33} x_{3}=b_{3} \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. },
\end{array}
$$

its dual LP is

$$
\begin{array}{ccccc}
\min & b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3} \\
\text { s.t. } & A_{11} y_{1}+A_{21} y_{2}+A_{31} y_{3} \geq c_{1} \\
& A_{12} y_{1}+A_{22} y_{2}+A_{32} y_{3} \leq c_{2} \\
& A_{13} y_{1}+A_{23} y_{2}+A_{33} y_{3}=c_{3} \\
& y_{1} \leq 0, y_{2} \geq 0, y_{3} \text { urs. }
\end{array}
$$

- Note that the constraint coefficient matrix is "transposed".

Matrix representation

- In general, if the primal LP

$$
\begin{array}{rr}
\max & c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \\
\text { s.t. } & A_{11} x_{1}+A_{12} x_{2}+A_{13} x_{3}=b_{1} \\
& A_{21} x_{1}+A_{22} x_{2}+A_{23} x_{3}=b_{2} \\
& A_{31} x_{1}+A_{32} x_{2}+A_{33} x_{3}=b_{3} \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0,
\end{array}
$$

is in the standard form, its dual LP is

$$
\begin{array}{ccccc}
\min & b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3} & & \\
\mathrm{s.t.} & A_{11} y_{1}+A_{21} y_{2}+A_{31} y_{3} \geq & c_{1} \\
& A_{12} y_{1}+A_{22} y_{2}+A_{32} y_{3} \geq & c_{2} \\
& A_{13} y_{1}+A_{23} y_{2}+A_{33} y_{3} \geq c_{3} .
\end{array}
$$

- In matrix representation:

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

and

$$
\begin{aligned}
\min & y^{T} b \\
\text { s.t. } & y^{T} A \geq c^{T} .
\end{aligned}
$$

The dual LP for a minimization primal LP

- For a minimization LP, its dual LP is to maximize the lower bound.
- Rules for the directions of variables and constraints are reversed:

$$
\begin{array}{rr}
\min & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \geq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4
\end{array} \Rightarrow \begin{aligned}
& \max \begin{aligned}
6 y_{1} & +4 y_{2} \\
\text { s.t. } & y_{1}
\end{aligned}+2 y_{2} \leq 3 \\
& 2 y_{1}++y_{2} \geq \\
& 3 y_{1}+2 y_{2}=8 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{aligned}
$$

- Note that

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+8 x_{3} \\
\geq & \left(y_{1}+2 y_{2}\right) x_{1}+\left(2 y_{1}+y_{2}\right) x_{2}+\left(3 y_{1}+2 y_{2}\right) x_{3} \\
\geq & \left(x_{1}+2 x_{2}+3 x_{3}\right) y_{1}+\left(2 x_{1}+x_{2}+2 x_{3}\right) y_{2} \\
\geq & 6 y_{1}+4 y_{2} .
\end{aligned}
$$

The general rule, uniqueness, and symmetry

- The general rule for finding the dual LP:

Obj. function	\max	\min	Obj. function
Constraint	\leq	≥ 0	
	\geq	≤ 0	Variable
	$=$	urs.	
Variable	≥ 0	\geq	
	≤ 0	\leq	Constraint
	urs.	$=$	

- If the primal LP is a maximization problem, do it from left to right.
- If the primal LP is a minimization problem, do it from right to left.

Proposition 1 (Uniqueness and symmetry of duality)

For any primal LP, there is a unique dual, whose dual is the primal.

Examples of primal-dual pairs

- Example 1:
- Example 2:

$$
\begin{array}{rrrr}
\max & 3 x_{1} & -x_{2} & \\
\text { s.t. } & x_{1} & +2 x_{2}=6 \\
& 3 x_{1}+3 x_{2} \leq-4
\end{array} \Leftrightarrow
$$

Road map

- Primal-dual pairs.
- Duality theorems.
- Shadow prices.

Duality theorems

- Duality provides many interesting properties.
- We will illustrate these properties for standard form primal LPs:

$$
\begin{align*}
\max & c^{T} x \tag{1}\\
\text { s.t. } & A x=b \quad \Leftrightarrow \quad \min \\
& x \geq 0 .
\end{align*} \quad y^{T} b \text { s.t. } \quad y^{T} A \geq c^{T} .
$$

- It can be shown that all the properties that we will introduce apply to other primal-dual pairs.

Weak duality

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x=b \quad \Leftrightarrow \quad \min \quad y^{T} b \\
& x \geq 0 .
\end{aligned}
$$

- The dual LP provides an upper bound of the primal LP.

Proposition 2 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual feasible, then $c^{T} x \leq y^{T} b$.

Proof. As long as x and y are primal and dual feasible, we have

$$
\begin{aligned}
c^{T} x & \leq y^{T} A x & \left(x \geq 0 \text { and } y^{T} A \geq c^{T}\right) \\
& \leq y^{T} b & (A x=b)
\end{aligned}
$$

Therefore, weak duality holds.

Strong duality

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x=b \quad \Leftrightarrow \quad \min \quad \\
& x \geq 0 .
\end{aligned}
$$

- The dual LP and primal LP are actually equivalent.

Proposition 3 (Strong duality)

For the LPs defined in (1), \bar{x} and \bar{y} are primal and dual optimal if and only if \bar{x} and \bar{y} are primal and dual feasible and $c^{T} \bar{x}=\bar{y}^{T}$ b.

Proof. To prove this if-and-only-if statement:

- (\Leftarrow) : For all dual feasible y, we have $c^{T} \bar{x} \leq y^{T} b$ by weak duality. But we are given that $c^{T} \bar{x}=\bar{y}^{T} b$, so we have $\bar{y}^{T} b \leq y^{T} b$ for all dual feasible y. This just tells us that \bar{y} is dual optimal. For \bar{x} it is the same.
- (\Rightarrow) : Beyond the scope of this course.

Implications of strong duality

- Strong duality certainly implies weak duality.
- Weak duality says that the dual LP provides a bound.
- Strong duality says that the bound is tight, i.e., cannot be improved.
- The primal and dual LPs are equivalent.
- Given the result of one LP, we may predict the result of its dual:

Primal	Dual		
	Infeasible	Unbounded	Finitely optimal
Infeasible	$\sqrt{ }$	$\sqrt{ }$	\times
Unbounded	$\sqrt{ }$	\times	\times
Finitely optimal	\times	\times	$\sqrt{ }$

- $\sqrt{ }$ means possible, \times means impossible.
- Primal unbounded \Rightarrow no upper bound \Rightarrow dual infeasible.
- Primal finitely optimal \Rightarrow finite objective value \Rightarrow dual finitely optimal.
- If primal is infeasible, the dual may still be infeasible (by examples).

The dual optimal solution

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x=b \quad \Leftrightarrow \quad \min \quad \\
& x \geq 0
\end{aligned} \quad y^{T} b \quad \text { s.t. } \quad y^{T} A \geq c^{T} .
$$

- If we have solved the primal LP, the dual optimal solution is there.

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if \bar{x} is primal optimal with basis B, then $\bar{y}^{T}=c_{B}^{T} A_{B}^{-1}$ is dual optimal, where

- $c_{B} \in \mathbb{R}^{m}$ is the row-0 vector of basic columns in B and
- $A_{B} \in \mathbb{R}^{m \times m}$ is the row- 1 to row- m matrix made of basic columns in B.

Proof. Beyond the scope of this course.

Example

- Consider the following primal and dual LPs:

$$
\begin{aligned}
& \max \quad x_{1} \\
& \text { s.t. } \quad 2 x_{1}-x_{2} \leq 4 \\
& 2 x_{1}+x_{2} \leq 8 \\
& x_{2} \leq 3 \\
& x_{i} \geq 0 \quad \forall i=1,2 . \\
& \min 4 y_{1}+8 y_{2}+3 y_{3} \\
& \text { s.t. } 2 y_{1}+2 y_{2} \geq 1 \\
& -y_{1}+y_{2}+y_{3} \geq 0 \\
& y_{i} \geq 0 \quad \forall i=1, \ldots, 3 \text {. }
\end{aligned}
$$

- For the standard form primal LP, we have

$$
c^{T}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ccccc}
2 & -1 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- Let's solve the primal LP to obtain an dual optimal solution.

Primal optimal solution

- By using the simplex method, we obtain an optimal tableau

-1	0	0	0	0	0						
2	-1	1	0	0	$x_{3}=4$						
2	1	0	1	0	$x_{4}=8$						
0	1	0	0	1	$x_{5}=3$	$\quad \rightarrow \cdots \rightarrow$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0
:---:	:---:	:---:	:---:	:---:	$\quad \rightarrow$	1	0	$\frac{1}{4}$	$\frac{1}{4}$		
:---:	:---:	:---:	:---:								
0	0	$x_{1}=3$									
0	1	$\frac{-1}{2}$	$\frac{1}{2}$								
0	0	$x_{2}=2$									
0	0	$\frac{1}{2}$	$\frac{-1}{2}$								
1	$x_{5}=1$										

- The associated optimal basis is $B=\{1,2,5\}$.
- The primal optimal solution is $\bar{x}=(3,2)$.
- The associated objective value is $z^{*}=3$.

Dual optimal solution

- Recall that

$$
c^{T}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ccccc}
2 & -1 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- Given $x_{B}=\left(x_{1}, x_{2}, x_{5}\right)$ and $x_{N}=\left(x_{3}, x_{4}\right)$ we have

$$
c_{B}^{T}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad A_{B}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] .
$$

Dual optimal solution

- Given the primal optimal basis, we obtain a dual solution

$$
\bar{y}^{T}=c_{B}^{T} A_{B}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right]=\left[\begin{array}{lll}
\frac{1}{4} & \frac{1}{4} & 0
\end{array}\right] .
$$

- For $\bar{y}=\left(\frac{1}{4}, \frac{1}{4}, 0\right)$:
- It is dual feasible: $2\left(\frac{1}{4}\right)+2\left(\frac{1}{4}\right) \geq 1$ and $-\frac{1}{4}+\frac{1}{4}+0 \geq 0$.
- Its dual objective value $w=4\left(\frac{1}{4}\right)+8\left(\frac{1}{4}\right)=3=z^{*}$.
- Therefore, \bar{y} is dual optimal.

Complementary slackness

- Consider w, the slack variables of the dual LP:

$$
\begin{array}{cl}
\min & y^{T} b \\
\text { s.t. } & y^{T} A-w^{T}=c^{T} \tag{2}\\
& w \geq 0
\end{array}
$$

Proposition 5 (Complementary slackness)

For the primal defined in (1) and dual defined in (2), \bar{x} and (\bar{y}, \bar{w}) are primal and dual optimal if and only if $\bar{w}^{T} \bar{x}=0$.

Proof. We have $c^{T} \bar{x}=\left(\bar{y}^{T} A-\bar{w}^{T}\right) \bar{x}=\bar{y}^{T} A \bar{x}-\bar{w}^{T} \bar{x}=\bar{y}^{T} b-\bar{w}^{T} \bar{x}$. Therefore, $\bar{w}^{T} \bar{x}=0$ if and only if $c^{T} \bar{x}=\bar{y}^{T} b$, i.e., \bar{x} and (\bar{y}, \bar{w}) are primal and dual optimal according to strong duality.

- Note that $\bar{w}^{T} \bar{x}=0$ if and only if $\bar{w}_{i} \bar{x}_{i}=0$ for all i as $\bar{x} \geq 0$ and $\bar{w} \geq 0$.
- If a dual (respectively, primal) constraint is nonbinding, the corresponding primal (respectively, dual) variable is zero.

Why duality?

- Why duality? Given an LP:
- We may solve it directly.
- Or we may solve the dual LP and then get the primal optimal solution.
- Why bothering?
- The computation time of the simplex method is roughly proportional to m^{3}.
- m is the number of functional constraints of the original LP.
- And n, the number of variables of the original LP, does not matter a lot.
- If $m \gg n$, solving the dual LP can take a significantly shorter time than solving the primal!
- There are many other benefits for having duality. We will see some more in this course.
- Read Sections 6.1, 6.3, and 6.4 carefully.

Road map

- Primal-dual pairs.
- Duality theorems.
- Shadow prices.

A product mix problem

- Suppose we produce tables and chairs with wood and labors. In total we have six units of wood and six labor hours.
- Each table is sold at $\$ 3$ and requires 2 units of wood and 1 labor hour.
- Each chair is sold at $\$ 1$ and requires 1 unit of wood and 2 labor hours.

How may we formulate an LP to maximize our sales revenue?

- The formulation is
$x_{1}=$ number of tables produced
$x_{2}=$ number of chairs produced.

$$
\begin{array}{rr}
\max & 3 x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 6 \\
& x_{1}+2 x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

- The optimal solution is $x^{*}=(3,0)$.

"What-if" questions

- In practice, people often ask "what-if" questions:
- What if the unit price of chairs becomes $\$ 2$?
- What if each table requires 3 unit of wood?
- What if we have 10 units of woord?
- Why what-if questions?
- Parameters may fluctuate.
- Estimation of parameters may be inaccurate.
- Looking for ways to improve the business.
- For realistic problems, what-if questions can be hard.
- Even though it may be just a tiny modification of one parameter, the optimal solution may change a lot.
- The tool for answering what-if questions is sensitivity analysis.

Humboldt Redwood

- Pacific Lumber Company (now Humboldt Redwood) has over 200,000 acres of forests and five mills in Humboldt County.
- Sustainability is important in making operational decisions.
- They contracted with an OR team to develop a 120 -year forest ecosystem management plan.
- The LP optimizes the timberland operations for maximizing profitability while satisfying constraints including sustainability.
- The model has around 8,500 functional constraints and 353,000 variables.
- The environment keeps changing!
- E.g., climate, supply and demand, logging costs, and regulations.
- Sensitivity analysis is applied.
- Read the application vignette in Section 6.7 and the article on CEIBA.

"What-if" questions

- In general, what-if questions can always be answered by formulating and solving a new optimization problem from scratch.
- But this may be too time consuming!
- By sensitivity analysis techniques:
- The original optimal tableau provides useful information.
- We typically start from the original optimal bfs and do just a few iterations to reach the new optimal bfs.
- Duality provides a theoretical background.
- Here we want to introduce just one type of what-if question: What if I have additional units of a certain resource?
- Consider the following scenario:
- One day, a salesperson enters your office and wants to offer you one additional unit of wood at $\$ 1$. Should you accept or reject?

One more unit of wood

- To answer this question, you may formulate a new LP:

$$
\begin{aligned}
\max & 3 x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 7 \\
& x_{1}+2 x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- The new objective value $z^{\prime}=3 \times 3.5=10.5$ is larger than the old objective value $z^{*}=9$.
- It is good to accept the offer (at the unit price $\$ 1$).
- We earn $\$ 0.5$ as our net benefit.

One more labor hour

- Suppose instead of offering one addition unit of wood, the salesperson offers one additional labor hour at $\$ 1$.

$$
\begin{aligned}
\max & 3 x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 6 \\
& x_{1}+2 x_{2} \leq 7 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- The new objective value is the same as the old objective value.
- It is not worthwhile to buy it: The objective value does not increase.
- The net loss is $\$ 1$.

Shadow prices

- For each resource, there is a maximum amount of price we are willing to pay for one additional unit.
- That depends on the net benefit of that one additional unit.
- For wood, this price is $\$ 1.5$. For labor hours, this price is $\$ 0$.
- This motivates us to define shadow prices for each constraint:

Definition 1 (Shadow price)

For an LP that has an optimal solution, the shadow price of a constraint is the amount of objective value increased when the RHS of that constraint is increased by 1, assuming the current optimal basis remains optimal.

- So for our table-chair example, the shadow prices for constraints 1 and 2 are 1.5 and 0 , respectively.
- For shadow prices, see Section 4.7.
- Note that we assume that the current optimal basis does not change.

Assuming the optimal basis does not change

- Consider another example:

$$
\begin{array}{ccc}
z^{*}=\max & 3 x_{1} & +\quad x_{2} \\
\text { s.t. } & x_{1} & +x_{2} \leq 4 \\
& x_{1} & +2 x_{2} \leq \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

- If we want to find the shadow price of constraint 1, we may try to solve a new LP:

$$
\begin{aligned}
& z^{* *}=\max 3 x_{1}+x_{2} \\
& \text { s.t. } x_{1}+x_{2} \leq 5 \\
& x_{1}+2 x_{2} \leq 4.5 \\
& x_{i} \geq 0 \quad \forall i=1,2 \text {. }
\end{aligned}
$$

Signs of shadow prices

- As a shadow price measures how the objective value is increased, its sign is determined based on how the feasible region changes:

Proposition 6 (Signs of shadow prices)
For any LP, the sign of a shadow price follows the rule below:

Objective function	Constraint		
	\leq	\geq	$=$
\max	≥ 0	≤ 0	Free
\min	≤ 0	≥ 0	Free

Nonbinding constraints' shadow prices

- If shifting a constraint does not affect the optimal solution, the shadow price must be zero. ${ }^{2}$

Proposition 7

Shadow prices are zero for constraints that are nonbinding at the optimal solution.

- Now we know finding shadow prices allows us to answer the questions regarding additional units of resources.
- But how to find all shadow prices?
- Let m be the number of constraints.
- Is there a better way than solving m LPs?
- Duality helps!

[^0]
Dual optimal solution provide shadow prices

Proposition 8

For any $L P$, shadow prices equal the values of dual variables in the dual optimal solution.

Proof. Let B be the old optimal basis and $z=c_{B}^{T} A_{B}^{-1} b$ be the old objective value. If b_{1} becomes $b_{1}^{\prime}=b_{1}+1$, then z becomes

$$
z^{\prime}=c_{B}^{T} A_{B}^{-1}\left(b+\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]\right)=z+\left(c_{B}^{T} A_{B}^{-1}\right)_{1} .
$$

So the shadow price of constraint 1 is $\left(c_{B}^{T} A_{B}^{-1}\right)_{1}$. In general, the shadow price of constraint i is $\left(c_{B}^{T} A_{B}^{-1}\right)_{i}$. As $c_{B}^{T} A_{B}^{-1}$ is the dual optimal solution, the proof is complete.

An example

- What are the shadow prices?

$$
\begin{aligned}
\min & 6 x_{1} \\
\mathrm{s.t.} & x_{1}+4 x_{2} \\
& 3 x_{1} \geq 2 \\
& +x_{2} \geq 1 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- We solve the dual LP

\max	$2 y_{1}$	$+y_{2}$
s.t.	y_{1}	
	$y_{1}+3 y_{2} \leq 6$	
	$y_{2} \leq 4$	
	$y_{i} \geq 0 \quad \forall i=1,2$.	

The dual optimal solution is $y^{*}=(4,0)$.

- So shadow prices are 4 and 0 , respectively.

[^0]: ${ }^{2}$ Not all binding constraints has nonzero shadow prices. Why?

