Operations Research, Spring 2017
 Pre-lecture Problems for Lecture 5:
 Linear Programming Duality

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:20am, March 23, 2017. Please submit a hard copy of your work in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 point) Find the dual for the following LP:

$$
\begin{array}{rlrl}
\max & 4 x_{1} & -2 x_{2}+x_{3} \\
\text { s.t. } & 2 x_{1}+x_{2} & \leq 10 \\
& & x_{2}+x_{3} & \geq 16 \\
& x_{1}>3 x_{2}-3 x_{3} & =14 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{array}
$$

2. (0 point) Consider a primal LP

$$
\begin{aligned}
\max & 3 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 8 \\
& x_{1}+2 x_{2} \leq 12 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

(a) Find a primal optimal solution \bar{x}.
(b) Formulate the dual LP.
(c) Solve the dual LP to get a dual optimal solution \bar{y}. Show that $c^{\mathrm{T}} \bar{x}=\bar{y}^{\mathrm{T}} b$, where c and b are the primal and dual objective function.
3. (10 points) Consider a primal LP

$$
\begin{array}{cl}
\max & 5 x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 12 \\
& x_{1}+2 x_{2} \leq 16 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{array}
$$

(a) Find a primal optimal solution \bar{x} by the simplex method.
(b) Formulate the dual LP.
(c) Solve the dual LP in any way you like to get a dual optimal solution \bar{y}. Show that $c^{\mathrm{T}} \bar{x}=\bar{y}^{\mathrm{T}} b$, where c and b are the primal and dual objective function.
(d) Use the primal optimal basis B you found in Part (a) to verify that $c_{B}^{\mathrm{T}} A_{B}^{-1}=\bar{y}^{\mathrm{T}}$.
(e) Find the shadow prices for the two primal constraints. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ If you are applying the correct concept, you may need no calculation for finding them. But maybe you would like to solve two modified primal LPs to do a verification.

