Operations Research, Spring 2017 Suggested Solution for Pre-lecture Problems for Lecture 5

Solution providers: Share Lin Department of Information Management National Taiwan University

1. The dual LP is

2. (a) Its standard form is

	-3	-5	0 0	0		0	-2	3	0	24
	1	1	1 0	$x_3 = 8$	\rightarrow	1	1	1	0	$x_1 = 8$
	1	2	0 1	$x_4 = 12$		0	1	-1	1	$x_4 = 4$
				32						
\rightarrow	1 0	2	-1	$x_1 = 4$						
	$0 \ 1$	-1	1	$x_2 = 4$						

The optimal solution is $\bar{x} = (4, 4)$ with an objective value 32. (b) The dual LP is

\min	$8y_1$	+	$12y_2$		
s.t.	y_1	+	y_2	\geq	3
	y_1	+	$2y_2$	\geq	5
	y_i	≥ 0	$\forall i = 1$	1, 2.	

(c) In Phase-I we get

\min									y_5	+	y_6		
s.t.	y_1	+	y_2	—	y_3			+	y_5			=	3
	y_1	+	$2y_2$			—	y_4			+	y_6	=	5
	y_i	≥ 0	$\forall i =$	= 1,	, 6.								

	0	0	0	0	-1	-1	0		adius	st	2	3	-1	-1	0	0	8
	1	1	-1	0	1	0	$y_5 = 3$	-	$\stackrel{\text{adju}}{\rightarrow}$	`	1	1	-1	0	1	0	$y_5 = 3$ $y_6 = 5$
	1	2	0	-1	0	1	$y_6 = 5$				1	2	0	-1	0	1	$y_{6} = 5$
\rightarrow	1	1	-1	. 0	y_1	= 3	\rightarrow	1	0	-2	1	y	$v_1 = 1$				
	0	1	1	1	y_6	= 2		0	1	1	-1	y	$y_2 = 2$				

In Phase-II we get

The optimal solution is $\bar{y} = (1, 2)$ with an objective value 32.

$$c^T \bar{x} = \begin{bmatrix} 3 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 32 = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 8 \\ 12 \end{bmatrix} = \bar{y}^T b.$$

3. (a) Its standard form is

-5	-3	0	0	0		0	2	5	0	60
1	1	1	0	$x_3 = 12$	\rightarrow	1	1	1	0	$x_1 = 12$
1	2	0	1	$x_4 = 16$		0	1	-1	1	$x_4 = 4$

The optimal solution is $\bar{x} = (12, 0)$ with an objective value 60.

(b) The dual LP is

(c) In Phase-I we get

	0	0	0	0	-1	-1	0	,	adiust	2		3	-1	-1	0	0	8
	1	1	-1	0	1	0	$y_5 = 5$		\overleftrightarrow	1		1	$^{-1}$	0	1	0	$y_5 = 5$
	1	2	0	-1	0	1	$y_6 = 3$			1		2	0	-1	0	1	$y_{6} = 3$
\rightarrow	0 1	$-1 \\ 2$	$-1 \\ 0$	1 -1	$egin{array}{c} y_5 \ y_1 \ y_1 \end{array}$	= 2 = 3	\rightarrow	$0 \\ 1$	$-1 \\ 1$	$-1 \\ -1$	$\begin{array}{c} 1 \\ 0 \end{array}$	$y \\ y$	$u_4 = 2$ $u_1 = 5$	2			

In Phase-II we get

-12	-16	0	0	60
0 1	$-1 \\ 1$	-1 -1	$\begin{array}{c} 1 \\ 0 \end{array}$	$y_4 = 2$ $y_1 = 5$

The optimal solution is $\bar{y} = (5,0)$ with an objective value 60.

$$c^T \bar{x} = \begin{bmatrix} 5 & 3 \end{bmatrix} \begin{bmatrix} 12 \\ 0 \end{bmatrix} = 60 = \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 12 \\ 16 \end{bmatrix} = \bar{y}^T b$$

(d)

$$c_B^T A_B^{-1} = \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 0 \end{bmatrix} = \bar{y}^T.$$

(e) By proposition 8, for any LP, shadow prices equal the values of dual variables in the dual optimal solution. Therefore, the shadow price for the first and the second primal constraints are 5 and 0, respectively.