## Operations Research, Spring 2017 <br> Suggested Solution for Pre-lecture Problems for Lecture 6

Solution providers: Share Lin
Department of Information Management National Taiwan University

1. (a) The optimal solution of the linear relaxation is $x^{1}=(8.5,7.5)$.
(b) Let's branch on $x_{1}$ first.

(c) Branching on $x_{2}$

2. (a)

$$
\begin{aligned}
& M_{1} \geq 20+10-6=24 \\
& M_{2} \geq 10+20-8-22
\end{aligned}
$$

(b) The feasible region on the $\left(x_{1}, x_{2}\right)$ plane is shown in Figure 1. By comparing the two extreme

Figure 1: Feasible region for Problem 2.b
points $(0,6)$ and $(8,0)$ in the feasible region, $(8,0)$ is the better one and therefore the optimal solution.
3. Let $z=x_{1}+x_{2}$. First, solve the linear relaxation and get $x^{1}=\left(0, \frac{15}{4}\right)$ with the objective value $z_{1}=7.5$. By the branch-and-bound algorithm, the optimal solution for the original IP is $x^{4}=(1,3)$ with the objective value $z_{4}=7$.


