Operations Research, Spring 2017

Pre-lecture Problems for Lecture 11: Algorithms for Nonlinear Programming

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:20 am, May 11, 2017. Please submit a hard copy of your work in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

- 1. (0 point) Let's solve $\min_{x \in \mathbb{R}^2} f(x) = x_1^2 + 2x_2^2$ by gradient descent. In each iteration, let the step size be that bringing you to the global minimum along the improving direction.
 - (a) Find the gradient of f(x).
 - (b) Let $x^0 = (1,0)$ be the initial solution. Run on iteration of gradient descent to find the next solution x^1 .
 - (c) Starting from x^1 , run one more iteration of gradient descent to find the next solution x^2 .
- 2. (0 point) Let's solve $\min_{x \in \mathbb{R}^2} f(x) = x_1^2 + 2x_2^3$ by Newton's method.
 - (a) Find the Hessian of f(x).
 - (b) Let $x^0 = (6,6)$ be the initial solution. Run on iteration of Newton's method to find the next solution x^1 .
 - (c) Starting from x^1 , run one more iteration of Newton's method to find the next solution x^2 .
- 3. (10 points; 2 points each) Let's solve

$$\min_{x \in \mathbb{R}} f(x) = \frac{1}{4}x^4 - \frac{1}{3}x^3 - x^2 + 4x + 1.$$

Let $x^0 = 1$ be the initial solution.

- (a) Find the gradient and Hessian of f(x).
- (b) Run one iteration of gradient descent to get the next solution x^G . In each iteration, let the step size be that bringing you to the global minimum along the improving direction.
- (c) Run one iteration of Newton's method to get the next solution x^F .