Operations Research, Spring 2017
 Pre-lecture Problems for Lecture 11:
 Algorithms for Nonlinear Programming

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:20 am, May 11, 2017. Please submit a hard copy of your work in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 point) Let's solve $\min _{x \in \mathbb{R}^{2}} f(x)=x_{1}^{2}+2 x_{2}^{2}$ by gradient descent. In each iteration, let the step size be that bringing you to the global minimum along the improving direction.
(a) Find the gradient of $f(x)$.
(b) Let $x^{0}=(1,0)$ be the initial solution. Run on iteration of gradient descent to find the next solution x^{1}.
(c) Starting from x^{1}, run one more iteration of gradient descent to find the next solution x^{2}.
2. (0 point) Let's solve $\min _{x \in \mathbb{R}^{2}} f(x)=x_{1}^{2}+2 x_{2}^{3}$ by Newton's method.
(a) Find the Hessian of $f(x)$.
(b) Let $x^{0}=(6,6)$ be the initial solution. Run on iteration of Newton's method to find the next solution x^{1}.
(c) Starting from x^{1}, run one more iteration of Newton's method to find the next solution x^{2}.
3. (10 points; 2 points each) Let's solve

$$
\min _{x \in \mathbb{R}} f(x)=\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-x^{2}+4 x+1 .
$$

Let $x^{0}=1$ be the initial solution.
(a) Find the gradient and Hessian of $f(x)$.
(b) Run one iteration of gradient descent to get the next solution x^{G}. In each iteration, let the step size be that bringing you to the global minimum along the improving direction.
(c) Run one iteration of Newton's method to get the next solution x^{F}.

