Job Allocation with a Consideration of Fairness

Chi-Wei Liu

Department of Information Management National Taiwan University

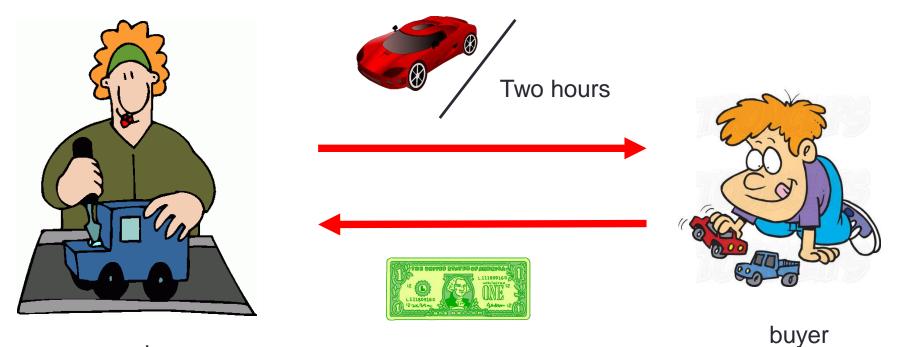
Adviser: Ling-Chieh Kung

2016/6/21

• What will come to your mind when thinking of job allocation

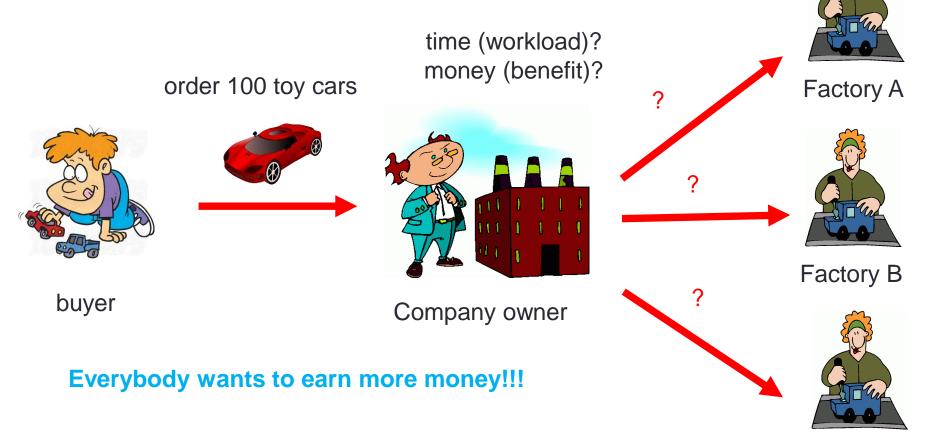
2

Consider a job of making toy cars



worker

Factory owner may wonder how to assign jobs



Factory C

 More precisely, there may be different workloads and benefits of completing each job

- Also, a factory has limited capacity
- Another example: "The Big Issue Taiwan" hires the homeless to sell magazines.

- Jobs are valuable resources.
- We try to assign jobs to "machines."
 - Not just consider the overall profitability but also fairness among machines.
 - Machines have limited capacity (it will prefer to be assigned more jobs as long as it has enough capacity).
 - All jobs cannot be spilt to be assigned.
- The objective function in our problem is set to maximize the minimum benefit generated by a machine.
 - And check whether that sacrifice efficiency too much.

Outline

- Problem Description and Formulation
 - Model Setting and Assumptions
 - NP-hardness
 - The CHBF algorithm
- Analysis
 - CHBF algorithm
 - The modified CHBF algorithm
- Numerical Study
- Conclusions

Model - Setting and Assumptions

- I: the set of machines
- J: the set of jobs
- *n*: the number of jobs (in set *J*)
- *m*: the number of machines (in set *I*)
- *K*: the capacity of machine i(K > 0)
- c_j : the finite workload of job $j (c_j > 0)$
- b_j : the finite benefit of job $j (b_j > 0)$

$$x_{ij} = \begin{cases} 1 & \text{if job } j \text{ is assigned to machine } i \\ 0 & \text{otherwise} \end{cases}, i \in I, j \in J,$$

Model - Setting and Assumptions

The fairness problem

 $i \in I$

$$\max \quad \min_{i \in I} \left\{ \sum_{j \in J} b_j x_{ij} \right\}$$

s.t.
$$\sum_{j \in J} c_j x_{ij} \le K \quad \forall i \in I$$

 $\sum x_{ij} \le 1 \quad \forall j \in J$

maximize the minimum total benefit among the machines

capacity constraint

(3.1)

a job can only be done once

 $x_{ij} \in \{0,1\} \quad \forall i \in I, j \in J.$ all jobs cannot be split (integrality)

Model - Setting and Assumptions

- Beside of the fairness, it is still important to ask what degree efficiency is sacrificed when we optimize fairness.
- Thus, we change the objective function to become a efficiency problem.

$$\max \sum_{i \in I} \sum_{j \in J} b_j x_{ij}$$

Model – NP-hardness

- **Theorem 1.** The job allocation problem in (3.1) is NP-hard.
 - Consider a special case with only two uncapacitated (i.e., $K \ge \sum_{j \in J} c_j$) machines.
 - The Partition problem reduces to this special case.
 - Partition problem is NP-hard.

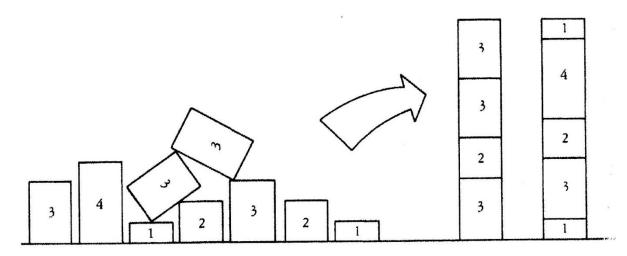
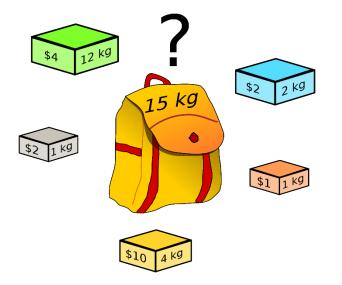


Figure 30.1 An example of the partition problem

Model – NP-hardness

- **Theorem 2.** The job allocation problem in (3.1) with m = 1 is NP-hard.
 - Our problem with one capacitated agent is exactly a knapsack problem.



A heuristic algorithm

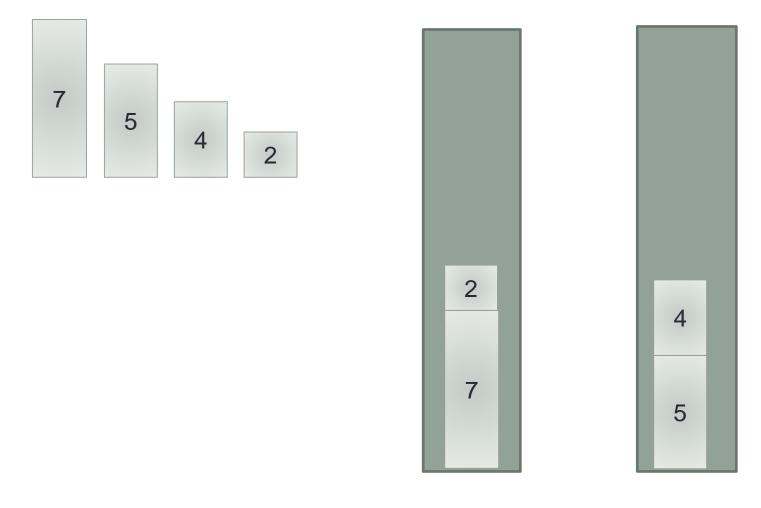
- We do not want to find an optimal solution.
- We will design a **heuristic algorithm** that:
 - Can find a near-optimal feasible solution.
 - Is fast.
- A heuristic algorithm is really applicable for large-scale problems in practice.
- What heuristic algorithm will you design?

Literature Review

- Graham (1966, 1969)
 - Minimum makespan problem for multiple identical machines
- Deuermeyer (1982)
 - Maximize the shortest completion time.

Literature Review

Suppose there are four jobs and two machines

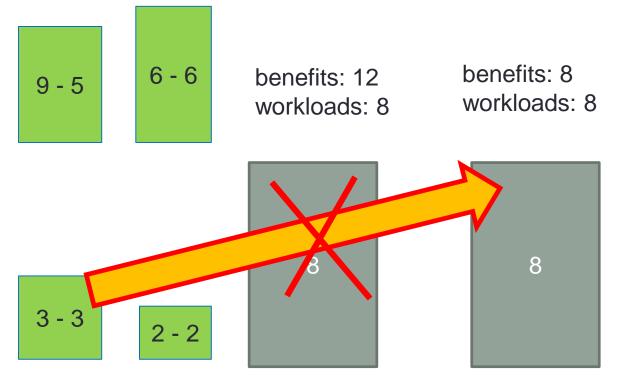


The CHBF algorithm

- We propose the algorithm based on LPT (longest time first) rule (denoted as capacitated highest-benefit job first, CHBF).
 - 1. Sort all jobs in descending order according to their benefit.
 - 2. Assign a job to the machine that currently has lowest cumulative benefit and *enough capacity*. (If a job cannot be assigned, try the machine with the next lowest cumulative benefit.)
 - 3. Repeat step 2 until the last job has been tried to be assigned.
- The time complexity can be easily analyzed.

The CHBF algorithm

Suppose there are four jobs and two machines



capacity: 8

Research objectives

- Designing an algorithm is easy. Showing that it is "good" is hard.
- What is "good?"
 - Average-case performance.
 - Worst-case performance.
- What do we mean by "worst-case performance?"

Research objectives

- We hope our heuristic algorithm can have a **worst-case performance guarantee**.
 - For a given instance, our algorithm finds a solution.
 - We do not know how good it is compared to an optimal solution.
 - We want to show that "it may be bad, but it will not be too bad."
 - We want to show this while we have no idea where an optimal solution is!
- If we can show it, we have an **approximation algorithm**.

Literature Review

- Graham (1966, 1969)
 - Minimum makespan problem for multiple identical machines
 - Develop a factor $\frac{4}{3}$ approximation algorithm (longest processing time first algorithm).
- Deuermeyer (1982)
 - Maximize the shortest completion time.
 - The same algorithm is a factor $-\frac{3}{4}$ approximation algorithm.
- Csirik et al. (1992)
 - Go further from Deuermeyer et al. (1982) and use the same method to show that the performance guarantee can be improved to $\frac{3m-1}{4m-2}$

Outline

- Literature Review
- Problem Description and Formulation
 - Model Setting and Assumptions
 - NP-hardness
- Analysis
 - CHBF algorithm
 - The modified CHBF algorithm
- Numerical Study
- Conclusions

Analysis – CHBF algorithm

- We show the that CHBF has three different worst-case performance guarantees for three different scenarios of **benefit-workload relationship** $b_i = hc_i^t$ for some h > 0.
 - Linear: t = 1
 - Convex: *t* > 1
 - Concave: *t* < 1
- We denote z* as the objective value of an optimal solution and z' as that of the CHBF solution.

- Theorem 3. If $b_j = hc_j$ for all $j \in J$ for some h > 0, we have $z' \ge \frac{1}{2}z^*$.
 - The largest value of z^* is hK.
 - We assume that $c_j \leq K$ for all $j \in J$.
 - We only need to prove the case if there is any job failing to be assigned due to limited capacity (otherwise, it has been proved to have a performance guarantee $\frac{3}{4}$ in Deuermeyer et al. (1982))

- Obviously, $z^* \leq hK$ (why?).
- We use contradiction to prove that

$$z' \geq \frac{1}{2}hK.$$

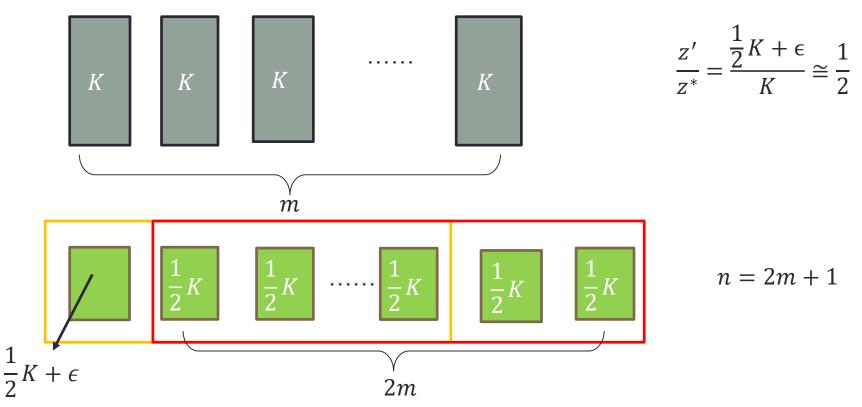
Suppose that there is a counterexample in which

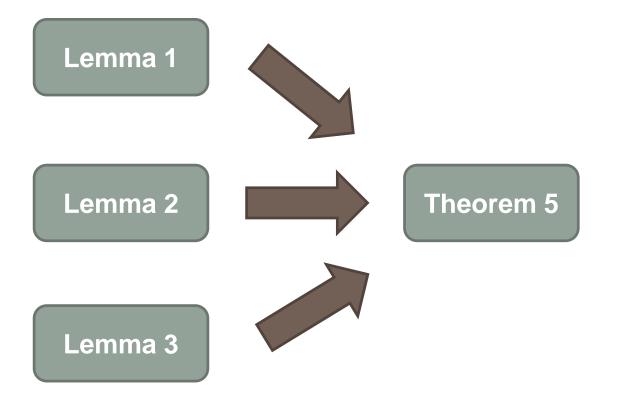
$$z' < \frac{1}{2}hK.$$

- Let job l is the first job not assigned during the CHBF process.
- Let machine *i* be the one having the lowest cumulative benefit when CHBF tries (but fails) to assign job *l*.

- 1. There must be at least one job assigned to machine i.
- 2. $z_i < \frac{1}{2}hK$, because $z' < \frac{1}{2}hK$.
- 3. For job *l*, CHBF implies $b_l < \frac{1}{2}hK$, so we know $c_l < \frac{1}{2}K$.
- 4. But because $z_i < \frac{1}{2}hK$, the cumulated benefit on machine *l* is also less than $\frac{1}{2}K$. If $c_l \le \frac{1}{2}K$, job *l* can actually be assigned to machine *i*. Contradiction!
- 5. We obtain $z' \ge \frac{1}{2}hK \ge \frac{1}{2}z^*$.

- **Theorem 4.** The performance guarantee $\frac{1}{2}$ of CHBF in Theorem 3 is tight.
- Let h = 1 and ϵ be a small positive number.





- Let $c_m = \beta K$ for some $\beta \in (0,1]$.
- Lemma 1. If $b_j = hc_j^t$ for all $j \in J$ for some given h > 0 and t > 1, we have

$$hK^t\beta^{t-1} \ge z^*,$$

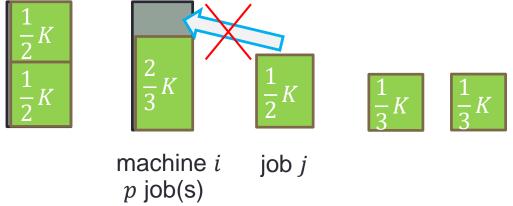
where $\beta = \frac{c_m}{K}$.

- In each machine contains exactly one job of workload $c_j = K$, we will have hK^t as the objective value.
- To further improve this bound:
 - We could only assign $\left|\frac{1}{\beta}\right|$ jobs to the machines.
 - The cumulative benefit is thus no greater than $\left[\frac{1}{\beta}\right]h(\beta K)^t < \frac{1}{\beta}h(\beta K)^t = hK^t\beta^{t-1}$.

• Lemma 2. If $b_j = hc_j^t$ for all $j \in J$ for some given h > 0 and t > 1, we have

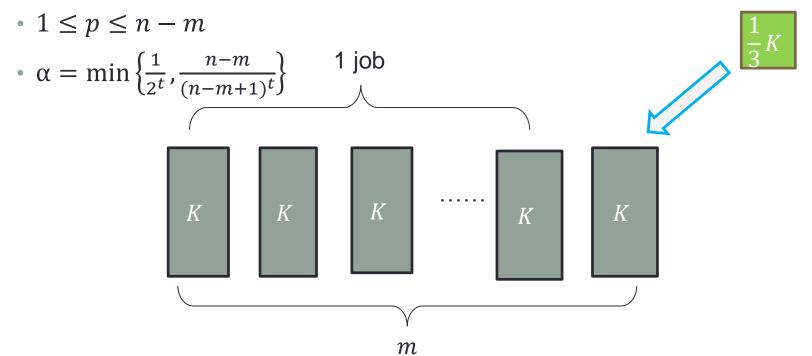
$$z' \ge \min\left\{\frac{1}{2^t}, \frac{n-m}{(n-m+1)^t}\right\} hK^t.$$

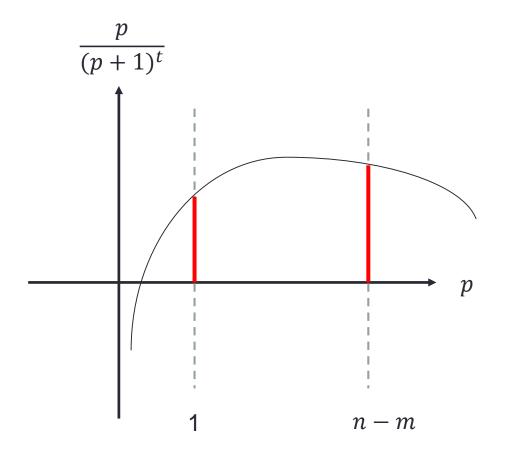
- We prove this result by considering the moment of our first failure.
- The failure happens when we cannot assign job *j* to the least cumulative machine *i* at that moment.
- Let p be the number of jobs that have been assigned to machine i at that moment.

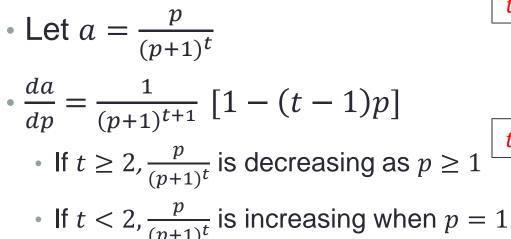


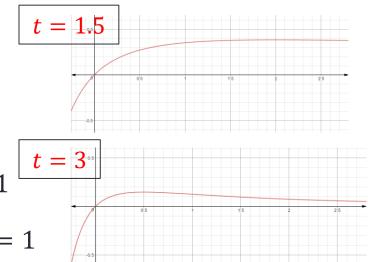
- Let $\alpha = \min\left\{\frac{1}{2^t}, \frac{n-m}{(n-m+1)^t}\right\}$ be the bound to be proved.
- We prove by contradiction by assuming that that $z' < \alpha h K^t$.
 - $z_i < \alpha h K^t$ > $b_j \leq \frac{\alpha h K^t}{p}$ (CHBF algorithm) > $c_j \leq \sqrt[t]{\frac{\alpha}{p}} K$ ($b_j = h c_j^t$) > $K_i \geq K - \sqrt[t]{\frac{\alpha}{p}} K$ > the cumulative benefit: $ph\left(\frac{K - \sqrt[t]{\frac{\alpha}{p}}K}{p}\right)^t \geq \alpha h K^t$ if and only if $\alpha \leq \frac{p}{(p+1)^t}$

- We would like to obtain an *a priori*, not an *a posteriori* bound.
- The smallest and largest possible numbers of jobs on machine *i* is 1 and *n* – *m*.









• When *t* approaches 1, eventually $\frac{1}{2^t}$ will be the smaller one (as long as n - m > 1), and this bound converges to $\frac{1}{2}$ as Theorem 3 suggests for the linear benefit-workload relationship (where t = 1).

• Lemma 3. If $b_j = hc_j^t$ for all $j \in J$ for some given h > 0 and t > 1, we have

 $z' \geq h\beta^t K^t,$

where $\beta = \frac{c_m}{K}$.

• According to CHBF rule, we assign the first *m*th jobs one at a time to the *m* machines. After that, each machines' benefit will be at least $h(\beta K)^t$, which implies that $z' \ge h\beta^t K^t$.

- From Lemma 1, we know $hK^t \ge \frac{z^*}{\beta^{t-1}}$.
- From Lemma 2, we know $z' \ge \min\left\{\frac{1}{2^t}, \frac{n-m}{(n-m+1)^t}\right\} hK^t$. From Lemma 3, we know $z' \ge h\beta^t K^t$.

• **Theorem 5.** If $b_i = hc_i^t$ for all $j \in J$ for some given h > 0 and t > 1, we have

$$z' \ge \frac{\max\left\{\min\left\{\frac{1}{2^{t}}, \frac{n-m}{(n-m+1)^{t}}\right\}, \beta^{t}\right\}}{\beta^{t-1}} z^{*}.$$

- When β is large, β^t would dominate $\min\left\{\frac{1}{2^t}, \frac{n-m}{(n-m+1)^t}\right\}$.
- Note that it is possible for the worst-case performance guarantee to be above $\frac{1}{2}$.

 $\max\left\{\min\left\{\frac{1}{2^{t}},\frac{n-m}{(n-m+1)^{t}}\right\},\beta^{t}\right\}hK^{t}$

- Let $c_m = \beta K$ for some $\beta \in (0,1]$.
- **Theorem 6.** If $b_j = hc_j^t$ for all $j \in J$ for some given h > 0and t < 1, we have

$$z' \geq \frac{K^{t-1}}{2^t} z^*,$$

where $\beta = \frac{c_m}{K}$.

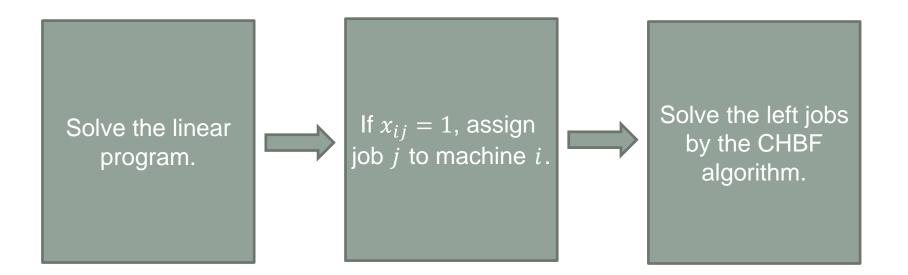
- We prove by the similar way we did in convex version.
- Notice that the most beneficial way to consume all the capacity of one machine is to use K jobs with unit workload.
 - In each machine contains exactly *K* jobs of workload 1, we will have *hK* as the objective value.

Analysis – CHBF algorithm (concave)

- Let $\alpha = \frac{K^{t-1}}{2^t}$ be the bound to be proved.
- Note that t < 1
- We prove by contradiction by assuming that that $z' < \alpha h K$
 - $z_i < \alpha h K$ > $b_j \leq \alpha h K$ (CHBF algorithm) > $c_j \leq (\alpha K)^{\frac{1}{t}}$ ($b_j = hc_j^t$) > $K_i \geq K - (\alpha K)^{\frac{1}{t}}$ > the cumulative benefit: $h(K - (\alpha K)^{\frac{1}{t}})^t$ > If it is at least equal to $\alpha h K$, then $\alpha \leq \frac{K^{t-1}}{2^t}$ > Then we obtain $z' \geq \frac{K^{t-1}}{2^t} h K \geq \frac{K^{t-1}}{2^t} z^*$

Analysis – the modified CHBF algorithm

- 1. We then use a linear programming solver to obtain an optimal solution to the relaxed program.
- 2. We assign job *j* to machine *i* if the result shows that job *j* is assigned to machine *i* ($x_{ij} = 1$) completely.
- 3. We then schedule the left jobs by the CHBF algorithm.



Outline

- Literature Review
- Problem Description and Formulation
 - Model Setting and Assumptions
 - NP-hardness
- Analysis
 - CHBF algorithm
 - The modified CHBF algorithm
- Numerical Study
- Conclusions

- To understand how CHBF and MCHBF perform in the problem, we consider the following factors for $c_i \sim U(0,50)$:
 - The relationship of job benefits and workloads $(b_j = c_j^t)$
 - 1. linear: t = 1 scenario L
 - 2. convex: t = 2 scenario X
 - 3. concave: $t = \frac{1}{2}$ scenario A
 - 4. unrelated: $b_j \sim U(0,50)$ scenario R
 - Machine capacity
 - 1. unlimitation: $K = \infty$ scenario N

2. loose capacity:
$$K = \left(\frac{\sum_{j \in J} c_j}{m}\right)$$
 - scenario L

3. tight capacity:
$$K = \frac{3}{4} \left(\frac{\sum_{j \in J} c_j}{m} \right)$$
 - scenario T

• For each of the twelve combinations of scenarios, we generated 100 experiments with several combination of *m* and *n*.

benefit-	capacity	m	n
workload	Ν	5	20
R	L	5	50
L	т	5	500
Х		15	50
A		15	500
		50	500

- For m = 5, n = 20, we use branch-and-bound algorithm IP solution.
- Due to memory limitation, we find a LP solution instead in other case.

- We denote solution of
 - "fairness" version as w^{IP} , w^{LP} , w^{CHBF} , w^{MCHBF}
 - "efficiency" version as z^{IP} , z^{LP} , z^{CHBF} , z^{MCHBF}

CHBF and MCHBF perform better if the capacity is looser

capacity	$\frac{Z(X^{CHBF})}{Z^{IP}}$	$\frac{Z(x^{MCHBF})}{z^{IP}}$	$\frac{W^{CHBF}}{W^{IP}}$	$\frac{W^{MCHBF}}{W^{IP}}$	
Ν	1	1	0.988	0.971	
L	0.987	0.978	0.964	0.937	
Т	0.946	0.973	0.912	0.931	

Table 5.1: Numerical results of number of capacity tightness

- Both algorithms perform better when $\frac{n}{m}$ becomes bigger.
- CHBF performs better than MCHBF when $\frac{n}{m}$ is less while it is better to applied MCHBF when $\frac{n}{m}$ is large.

$\frac{n}{m}$	$\frac{Z(x^{CHBF})}{z^{IP}}$	$\frac{Z(x^{MCHBF})}{z^{IP}}$	$\frac{W^{CHBF}}{W^{IP}}$	$\frac{W^{MCHBF}}{W^{IP}}$
100	0.983	0.999	0.980	0.997
33.333	0.983 <	0.998	0.977	0.989
10	0.981	0.991	0.965	0.962
4	0.971	0.964	0.942 >	0.907
3.333	0.961	0.960	0.899	0.863

Table 5.2: Numerical results of number of machines and jobs

- For "efficiency" version, all ratios are larger than 0.98 except for using CHBF when benefits are concave in workloads
 - -> both algorithms would not sacrifice too much efficiency
- For "fairness" version,
 - CHBF and MCHBF all perform the best when benefits are linear in workloads.
 - CHBF performs well when benefits are convex in workloads while performing the worst when benefits are concave in workloads.
 - MCHBF performs more or less the same except when benefits are linear in workloads.

benefit- workload	$\frac{z(x^{CHBF})}{z^{IP}}$	$\frac{z(x^{MCHBF})}{z^{IP}}$	$\frac{W^{CHBF}}{W^{IP}}$	$\frac{W^{MCHBF}}{W^{IP}}$
R	0.992	0.988	0.947	0.936
L	0.990	0.988	0.979	0.971
Х	0.988	0.980	0.976	0.934
А	0.936	0.979	0.918	0.945

Table 5.3: Numerical results of the benefit-workload relationship

Numerical study - summary

- The average performance of all instances is above 0.8.
- CHBF performs well when job benefits are convex or linear in workloads.
- MCHBF performs better than CHBF when job benefit are concave in workloads.
- The convexity or concavity of the benefit-workload relationship has an important managerial implication.
 - convex -> production environment is of significant economy of scale
 - concave -> the product is of diminishing marginal benefit for consumers

Outline

- Literature Review
- Problem Description and Formulation
 - Model Setting and Assumptions
 - NP-hardness
 - Performance of the algorithms
- Analysis
 - CHBF algorithm
 - The modified CHBF algorithm
- Numerical Study
- Conclusions

Conclusions

- We consider a job allocation problem with fairness.
 - We modify a classic algorithm to develop our own algorithm for our problem.
 - We prove the performance guarantees of our algorithm when the relationship between benefits and workloads is linear, convex, and concave.
 - A numerical study is conducted.
 - The CHBF algorithm is more appropriate when production environment exhibits **significant economy of scale**.
 - The MCHBF algorithm is more appropriate when the product is of diminishing marginal benefit for consumers.
- Further investigation
 - Prove worst-case performance guarantee of our algorithm under general problem or under some conditions.
 - Modify our algorithm by the ideas coming up with when we prove the bounds.

THANK YOU