Operations Research, Spring 2017 Lecture 10: Multi-variate Nonlinear Programming

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

1. (1 point each) Consider the following matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}, \begin{bmatrix} -4 & 2 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ and } \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

Which of them are positive semi-definite?

2. (2 points each) For each of the following functions, determine the region over which the function is convex.

(a)
$$f(x_1, x_2) = x_1^2 + x_2^3$$
.
(b) $f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2$.
(c) $f(x_1, x_2) = x_1^3 - x_1^2 x_2 + x_2^2$.
(d) $f(x_1, x_2, x_3) = x_1^2 + x_1 x_2 x_3$.
(e) $f(x_1, x_2, x_3) = -\sqrt{x_1} + \frac{1}{x_2} + e^{-x_3}$.

3. (2 points each) Consider the NLP

$$\begin{array}{ll} \max & x_1 + x_2 \\ \text{s.t.} & x_1^2 + 2x_2^2 \le 12 \end{array}$$

- (a) Will the constraint always be binding at an optimal solution?
- (b) Find the Lagrangian. What is the sign of your Lagrange multiplier?
- (c) Formulate the Lagrangian relaxation.
- (d) According to the FOC for the Lagrangian, what must be satisfied by an optimal solution?
- (e) Find an optimal solution to the NLP.

4. Consider the NLP

min
$$x_1^2 + x_2^2 + x_3^2$$

s.t. $x_1 + 2x_2 + 3x_3 \le b$.

(a) (2 points) Will the constraint always be binding at an optimal solution?

(b) (2 points) Find the Lagrangian. What is the sign of your Lagrange multiplier?

- (c) (3 points) Let b = 6. Solve the NLP.
- (d) (3 points) Let b = -14. Solve the NLP.

5. (2 points each) A retailer sells products 1 and 2 at prices p_1 and p_2 . For product i, the demand is

$$q_i = a - p_i + b p_{3-i}, \quad i = 1, 2,$$

where a > 0 and $b \in [0, 1)$. The retailer sets p_1 and p_2 to maximize its total profit. Assume that there is no production cost.

- (a) Explain why $b \in [0, 1)$ is reasonable.
- (b) Formulate the retailer's problem.
- (c) Is this a convex program?
- (d) Solve the retailer's problem.
- (e) How do the optimal prices change with a and b? Does that make sense?

6. (5 points each) Consider a set of data (x_i, y_i) , i = 1, ..., n. If we believe that x_i and y_i has a linear relationship, we may apply simple linear regression to fit these data. More precisely, we try to find α and β such that the line $y = \alpha + \beta x$ minimizes the sum of squared errors for all the data points:

$$\min_{\alpha,\beta} \sum_{i=1}^{n} \left[y_i - (\alpha + \beta x_i) \right]^2$$

(a) Is this a convex program?

(b) Solve the NLP to derive the formula for simple linear regression.