Operations Research, Spring 2017
 Lecture 13: Algorithms for Nonlinear Programming

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (2 points each) Consider the NLP

$$
\min _{x \in \mathbb{R}} f(x)=x^{2}-3 x+2 .
$$

(a) Find its gradient and Hessian.
(b) Starting at an initial solution $x^{0}=4$, do one iteration of gradient descent to reach the next solution.
(c) When applying gradient descent, is it always true to reach a global optimal solution if the function is convex? Explain why.
2. (2 points each) Consider the NLP

$$
\min _{x \in \mathbb{R}^{2}} f(x)=x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}+2 x_{1} .
$$

(a) Find its gradient and Hessian. Analytically find its optimal solution x^{*}.
(b) Starting at an initial solution $x^{0}=(0,0)$, do one iteration of gradient descent to reach the next solution x^{1}.
(c) Starting at the current solution x^{1}, do one iteration of gradient descent to reach the next solution x^{2}.
(d) Depict the search route from x^{0} to x^{1} to x^{2}. Also depict the optimal solution x^{*} and the two equations obtained from the FOC. What do you observe? In particular, would you predict x^{3}, x^{4}, etc.?
3. (2 points each) For a maximization problem, we apply gradient ascend rather than gradient descent: We move along the gradient, not the negative gradient. Consider the NLP

$$
\max _{x \in \mathbb{R}^{2}} f(x)=x_{1} x_{2} .
$$

(a) Find its gradient and Hessian. Show that this problem is unbounded.
(b) Starting at an initial solution $x^{0}=(1,-1)$, do one iteration of gradient descent to reach the next solution x^{1}. What will be the conclusion of running gradient descent?
(c) Starting at an initial solution $x^{0}=(1,1)$, do one iteration of gradient descent to reach the next solution x^{1}. What will be the conclusion of running gradient descent?
4. (2 points each) Consider the NLP

$$
\begin{array}{cl}
\min & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq-5 .
\end{array}
$$

Note that this is a constrained maximization problem.
(a) Analytically find its optimal solution.
(b) For a constrained problem, one simple idea to search for the step size is to search only among feasible step sizes. Following this idea, starting from an initial solution $x^{0}=(-2,-4)$ and do one iteration of constrained gradient descent to reach the next solution x^{1}.
(c) Starting from an initial solution $x^{0}=(-3,-3)$ and do one iteration of constrained gradient descent to reach the next solution x^{1}.
(d) Comment on this algorithm for constrained NLPs.
5. (2 points each) Consider the NLP

$$
\min _{x \in \mathbb{R}} f(x)=(x-1)(x-2)(x+1) x+2 x .
$$

(a) Start from an initial solution $x^{0}=2$, run one iteration of Newton's method to reach the next solution x^{1}. Show that you get improved, i.e., $f\left(x^{1}\right)<f\left(x^{0}\right)$.
(b) Start from an initial solution $x^{0}=\frac{1}{2}$, run one iteration of Newton's method to reach the next solution x^{1}. Do you get improved?
(c) Start from an initial solution $x^{0}=0$, run one iteration of Newton's method to reach the next solution x^{1}. What happened?
6. (2 points each) Recall our retailer selling two products by choosing their prices p_{1} and p_{2}. Suppose that the demand of product i is

$$
q_{i}=4-p_{i}+\frac{1}{2} p_{3-i}, \quad i=1,2 .
$$

The unit production cost is c_{i} for product i.
(a) Formulate the retailer's problem.
(b) Suppose that $c_{1}=c_{2}=2$. Starting from $x^{0}=(0,0)$, run one iteration of gradient descent to reach the next solution x^{1}.
(c) Suppose that $c_{1}=c_{2}=2$. Starting from $x^{0}=(0,0)$, run one iteration of Newton's method to reach the next solution x^{1}.
(d) Suppose that $c_{1}=1$ and $c_{2}=2$. Starting from $x^{0}=(0,0)$, run one iteration of gradient descent to reach the next solution x^{1}.
(e) Suppose that $c_{1}=1$ and $c_{2}=2$. Starting from $x^{0}=(0,0)$, run one iteration of Newton's method to reach the next solution x^{1}.

