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1. (a) The standard form in phase I is

min x4

s.t. x′1 − x′′1 + 2x2 + x3 = 4

x′1 − x′′1 + x2 + x4 = 3

x′1, x
′′
1 , x2, x3, x4 ≥ 0.

The iterations for phase I are as follows:

0 0 0 0 −1 0

1 −1 2 1 0 4 (x3)

1 −1 1 0 1 3 (x4)

→

1 −1 1 0 0 3

1 −1 2 1 0 4 (x3)

1 −1 1 0 1 3 (x4)

→

0 0 0 0 −1 0

0 0 1 1 −1 1 (x3)

1 −1 1 0 1 3 (x′1)

.

(b) The standard form in phase II is

max 2x′1 − 2x′′1 + 3x2

s.t. x′1 − x′′1 + 2x2 + x3 = 4

x′1 − x′′1 + x2 + x4 = 3

x′1, x
′′
1 , x2, x3, x4 ≥ 0.

The iterations for phase II are as follows:

−2 2 −3 0 0

0 0 1 1 1 (x3)

1 −1 1 0 3 (x′1)

→

0 0 −1 0 6

0 0 1 1 1 (x3)

1 −1 1 0 3 (x′1)

→

0 0 0 1 7

0 0 1 1 1 (x2)

1 −1 0 −1 2 (x′1)

.

An optimal solution to the original LP is (x1, x2) = (2, 1) with objective value z∗ = 7.

2. (a) The maximum number of edges that may be selected in an n-node complete graph is bn2 c.
(b) Let the decision variables be

xij =

{
1 if the edge between node i and node j is selected
0 otherwise

, [i, j] ∈ E.

The linear integer formulation is

max
∑

[i,j]∈E

xij

s.t.
∑

[k,i]∈E

xki +
∑

[i,j]∈E

xij ≤ 1 ∀i ∈ V

xij ∈ {0, 1} ∀[i, j] ∈ E.
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3. (a) We formulate the problem as a transportation problem by making each worker a supply node
and each job a demand node. Each supply node has a supply quantity 2 and each demand
node has a demand quantity 1. Moreover, we add a virtual demand node, node 6, with demand
quantity 5. The cost between a supply node i and a demand node j for j = 1, ..., 5 is cij for
i = 1, ..., 5. For demand node 6, the cost from a supply node i to it is ci,6 = 0 for i = 1, ..., 5.
With this setting, we may then use a transportation solver to find the minimum-cost way for
shipping items from the supply nodes to the demand nodes. It then implies how to assign
jobs to workers with the minimum cost.

(b) Let the decision variables be

xij = the number of job j that worker i does, i = 1, ..., 5, j = 1, ..., 6.

The complete formulation is

min

5∑
i=1

6∑
j=1

cijxij

s.t.

6∑
j=1

xij = 2 ∀i = 1, ..., 5

5∑
i=1

xij = 1 ∀j = 1, ..., 5

5∑
i=1

xi6 = 5

xij ∈ Z+ ∀i = 1, ..., 5, j = 1, ..., 6.

The objective function is to minimize the total cost, and those three constraints guarantee the
input is equal to the output for each node. The coefficient matrix is totally unimodular. If
you divide the constraints by putting the first constraint in one group and putting the second
and third constraint in the other group, then for each column two nonzero elements will not
be in the same group. Besides, all the elements are either 1, 0, or -1, and each column contains
at most two nonzero elements. Therefore, the coefficient matrix is totally unimodular.

(c) Let the decision variables be

xij =

{
1 if worker i does job j
0 otherwise

, i = 1, ..., 5, j = 1, ..., 5, and

pij = the percentage of job j that worker i does, i = 1, ..., 5, j = 1, ..., 5.

The linear integer formulation is

min

5∑
i=1

5∑
j=1

cijpij

s.t.

5∑
i=1

pij = 1 ∀j = 1, ..., 5

5∑
i=1

xij ≤ 2 ∀j = 1, ..., 5

5∑
j=1

xij ≤ 2 ∀i = 1, ..., 5

pij ≤ xij ∀i = 1, ..., 5, j = 1, ..., 5

xij ∈ {0, 1} ∀i = 1, ..., 5, j = 1, ..., 5

pij ≥ 0 ∀i = 1, ..., 5, j = 1, ..., 5.
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The first constraint guarantees that each job can be completely done by all workers. The
second constraint guarantees that each job can be assigned to at most two workers. The third
constraint guarantees that each worker can be assigned at most two kinds of jobs. The fourth
constraint link the relationship between the two sets of variables.

4. The inventory-time graph is as shown below:

Figure 1: Inventory-time graph

The total annual cost C is the sum of annual ordering cost and annual holding cost.

C =
1
3q
4D

·K +
5D
16D
3q
4D

· h

=
4KD

3q
+

5qh

12

where the first one is annual ordering cost which is annual ordering times times ordering cost, and
the second one is annual holding cost which is average inventory times holding cost. What we want
to do is to minimize C, i.e.,

min
q

C =
4KD

3q
+

5qh

12
.

By FOC, we get optimal order quantity q∗ is
√

16KD
5h .

5. (a) As q∗ =
√

2KD
h(1−D

r )
=
√

(2)(50)(1000)

1(1− 1000
1600 )

= 400
√

5
3 = 516.397, the EPQ is 516.397 units.

(b) The overage cost co = $20 and the underage cost cu = $34. Therefore, we have

1− F (q∗) =
co

co + cu
⇒ 200− q∗

200
=

34

54
⇒ q∗ = 206.6.

the newsvender order quantity is 206.6 units.

6. (a) The formulation is

max

2∑
i=1

(ai − biqi)qi

s.t. q1 ≤ q2
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(b) The Lagragian is

L(q|λ) = (a1 − b1q1)q1 + (a2 − b2q2)q2 + λ(q2 − q1)

for some λ ≥ 0. The FOC for the Lagrangian is

∂

∂q1
L(q|λ) = a1 − 2b1q1 − λ = 0 and

∂

∂q2
L(q|λ) = a2 − 2b2q2 + λ = 0,

which imply

q1 =
a1 − λ

2b1
and q2 =

a2 + λ

2b2
.

When the constraint is binding,

q2 − q1 = 0 ⇔ a2 + λ

2b2
− a1 − λ

2b1
= 0 ⇔ a2

2b2
− a1

2b1
+

λ

2b2
+

λ

2b1
= 0

Since λ
2b2

+ λ
2b1
≥ 0, we need a2

2b2
− a1

2b1
≤ 0 to satisfy the equality. Therefore, the condition

for the constraint to be binding at an optimal solution is a2
2b2
≤ a1

2b1
.

(c) When the constraint is not binding, λ must be 0 and thus qi = ai
2bi

; otherwise, λ 6= 0 and

qi = a1+a2
2(b1+b2)

for i = 1, 2. Collectively, the optimal solution to this problem is

(q∗1 , q
∗
2) =


(
a1
2b1

,
a2
2b2

)
if
a1
2b1
≤ a2

2b2(
a1 + a2

2(b1 + b2)
,
a1 + a2

2(b1 + b2)

)
otherwise

.

7. (a) The nonlinear program can be graphed as shown below

Figure 2: Graph for Problem 7

To maximize x1 over this unbounded feasible region, the problem is unbounded.

(b) No. (−3, 3) and (3,−3) are in the feasible region, but a combination of these two points
1
2 (−3, 3) + 1

2 (3,−3) = (0, 0) is not in the feasible region. Hence, it is not convex program.

(c) Yes. Let f(x) = x1, g1(x) = x1 + x2, and g2(x) = −x21 − x22
i. Primal feasibility: g1(−3, 3) = −3 + 3 = 0 ≤ 0 and g2(−3, 3) = −9− 9 ≤ −18.

ii. Dual feasibility: Given that ∇f(−3, 3) = (1, 0), ∇g1(−3, 3) = (1, 1), and ∇g2(−3, 3) =
(6,−6), we need to find λ ≥ 0 such that ∇f(−3, 3) = λ1∇g1(−3, 3) + λ2∇g2(−3, 3). It
turns out that λ1 = 1

2 and λ2 = 1
12 work.
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iii. Complementary slackness: λ1[0 − g1(−3, 3)] = 1
2 [0 − 0] = 0 and λ2[−18 − g2(−3, 3)] =

1
12 [−18 + 18] = 0.

(d) No. Let f(x) = x1, g1(x) = x1 + x2, and g2(x) = x21 + x22. For dual feasibility, given that
∇f(−3, 3) = (1, 0), ∇g1(−3, 3) = (1, 1), and ∇g2(−3, 3) = (−6, 6), we need to find λ ≥ 0
such that ∇f(−3, 3) = λ1∇g1(−3, 3) + λ2∇g2(−3, 3). As the unique solution has λ1 = 1

2 and
λ2 = − 1

12 , dual feasibility does not hold.

8. We define

xt = unit of product that produced in period t, t = 1, ..., T, and

yt = unit of product that sold in period t, t = 1, ..., T

as our decision variables. The formulation is

max

T∑
t=1

(Ptyt − Ctxt)− S
T∑
i=1

i∑
t=1

(Dt − yt)−H
T∑
i=1

i∑
t=1

(xt − yt)

s.t.

i∑
t=1

yt ≤
i∑
t=1

xt ∀i = 1, ..., T

i∑
t=1

yt ≤
i∑
t=1

Dt ∀i = 1, ..., T

T∑
t=1

yt ≥
T∑
t=1

Dt

xt ≥ 0 ∀t = 1, ..., T

yt ≥ 0 ∀t = 1, ..., T

The objective function maximizes the total profit. The first constraint ensures that the accumulated
sales quantity is no more than the accumulated production quantity. The second constraint ensures
that the accumulated sales quantity is no more than the accumulated demand quantity. The third
constraint ensures that the total demand will be fulfilled eventually.

5


