Operations Research, Spring 2014
 Suggested Solution for Homework 1

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University
3. (a) We use Gauss-Jordan elimination to solve the equations:

$$
\begin{aligned}
{\left[\begin{array}{ccc|c}
0 & 2 & 2 & 4 \\
1 & 2 & 1 & 4 \\
0 & 1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 1 & 4 \\
0 & 2 & 2 & 4 \\
0 & 1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 1 & 4 \\
0 & 1 & 1 & 2 \\
0 & 1 & -1 & 0
\end{array}\right] } \\
\rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 \\
0 & 0 & -2 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

The linear system has a unique solution $\left(x_{1}, x_{2}, x_{3}\right)=(1,1,1)$.
(b) We use Gauss-Jordan elimination to find the inverse of the matrix:

$$
\begin{aligned}
{\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
4 & 1 & 2 & 0 & 1 & 0 \\
3 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & -4 & 1 & 0 \\
0 & 1 & 1 & -3 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & -4 & 1 & 0 \\
0 & 0 & -1 & 1 & -1 & 1
\end{array}\right] } \\
\rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & -4 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 & -1 & 2 \\
0 & 0 & 1 & -1 & 1 & -1
\end{array}\right] .
\end{aligned}
$$

Therefore, the inverse is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right]
$$

(c) To find constants c_{1}, c_{2}, and c_{3} such that $c_{1}\left[\begin{array}{l}1 \\ 4 \\ 3\end{array}\right]+c_{2}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]+c_{3}\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, we use Gauss-Jordan elimination to solve the problem:

$$
\begin{aligned}
{\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
4 & 1 & 2 & 0 \\
3 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] } \\
\rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Since $c_{1}=c_{2}=c_{3}=0$ is the only solution, the column vectors of the matrix are linearly independent. Please note that what we are doing is to find the rank of the matrix. As the matrix has full rank, the three column vectors are linearly independent.
(d) We use Gauss-Jordan elimination to check the number of non-zero row vectors:

$$
\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
2 & -1 & 2 & 3 \\
4 & 5 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
0 & -7 & 2 & 1 \\
0 & -7 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & 0 & 1 \\
0 & -7 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since there are two non-zero row vectors, the rank of the matrix is 2 .
4. (a) $\mathbb{E}[X]=\sum_{x=1}^{6}[x \operatorname{Pr}(X=x)]=\frac{1+2+\cdots+6}{6}=3.5$.
(b) Let μ be the expectation of $X(\mathbb{E}[X]), \operatorname{Var}(X)=\mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{x=1}^{6}\left[(x-\mu)^{2} \operatorname{Pr}(X=x)\right]=\frac{35}{12}$.
(c) $\mathbb{E}\left[X_{1}+X_{2}\right]=\mathbb{E}\left[X_{1}\right]+\mathbb{E}\left[X_{2}\right]=7$.
(d) $\operatorname{Pr}\left(X_{1}=X_{2}\right)=\sum_{i=1}^{6} \operatorname{Pr}\left(X_{1}=X_{2}=i\right)=\frac{6}{36}=\frac{1}{6}$.
5. (a) We reformulate the model to

$$
\begin{aligned}
\max & 500 x_{1}+400 x_{2}+200 x_{3} \\
\text { s.t. } & 4 x_{1}+2 x_{2}+3 x_{3} \leq 5 \\
& x_{2}+x_{3} \leq 1 \\
& x_{i} \in\{0,1\} \quad \forall i=1,2,3
\end{aligned}
$$

The best solution is $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$. To maximize the sales revenue, we should only sell the textbook of Calculus, and we will earn $\$ 500$.
(b) Let

$$
\begin{aligned}
& x_{1}= \begin{cases}1 & \text { if textbook Calculus is brought to sell } \\
0 & \text { otherwise }\end{cases} \\
& x_{2}= \begin{cases}1 & \text { if textbook Computer Programming is brought to sell } \\
0 & \text { otherwise }\end{cases} \\
& x_{3}= \begin{cases}1 & \text { if textbook Operations Research is brought to sell , and } \\
0 & \text { otherwise }\end{cases} \\
& x_{4}= \begin{cases}1 & \text { if textbook Optimation is brought to sell } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Our model is

$$
\begin{aligned}
\max & 500 x_{1}+400 x_{2}+200 x_{3}+200 x_{4} \\
\text { s.t. } & 4 x_{1}+2 x_{2}+3 x_{3}+2 x_{4} \leq 5 \\
& x_{2}+x_{3} \leq 1 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4
\end{aligned}
$$

The best solution is $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0,1,0,1)$. To maximize the sales revenue, we should sell the textbooks of ComputerProgramming and Optimation, and we will earn $\$ 600$.

