
Operations Research, Spring 2014

Suggested Solution for Homework 2
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

1. (a) Since (0, ..., 0, 1) can be obtained by a combination of (0, ..., 0, 0) and (0, ..., 0, 2) as (0, ..., 0, 1) =
1
2 (0, ..., 0, 0) + 1

2 (0, ..., 0, 2), it is not an extreme point.

(b) For point 0, if there exists two points x and y such that λx+ (1− λ)y = 0, either x or y must
be negative. As all the feasible points are nonnegative, point 0 is an extreme point. For any
other feasible point n (which is a positive integer), it can be obtained by a combination of
n− 1 and n+ 1 as 1

2 (n− 1) + 1
2 (n+ 1) = i. Therefore, no positive integer is an extreme point.

2. The feasible region and isoquant line are illustrated in Figure 1. It is clear that we should push
the isoquant line until we stop at the extreme point (2, 2), which is an optimal solution.

Figure 1: Graphical solution for Problem 2

3. Omitted.

4. To make our notation concise, we label Monday as day 1, Tuesday as day 2, ..., and Sunday as day
7. With the labeling, let the decision variables be

xij = number of officers whose days off are on days i and j, i = 1, ..., 6, j = i+ 1, ..., 7.

The objective is to minimize the number of officers whose days off are not consecutive, or equiva-
lently, maximizing the number of officers whose days off are consecutive. Therefore, we maximize

x12 + x23 + · · ·+ x67 + x17.

For Monday, we need at least 12 officers, which means we may have at most 18 officers off on
Monday. This is achieved by having

x12 + x13 + · · ·+ x17 ≤ 18.

Similar arguments give us the constraints for the other six days. Finally, the total number of
officers is 30, so we should have

x12 + x13 + · · ·+ x67 = 30.
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The complete formulation is

z∗ = max x12 + x23 + x34 + x45 + x56 + x67 + x17

s.t. x12 + x13 + x14 + x15 + x16 + x17 ≤ 18 (Number of officers off on Monday)

x12 + x23 + x24 + x25 + x26 + x27 ≤ 10 (Number of officers off on Tuesday)

x13 + x23 + x34 + x35 + x36 + x37 ≤ 12 (Number of officers off on Wednesday)

x14 + x24 + x34 + x45 + x46 + x47 ≤ 8 (Number of officers off on Thursday)

x15 + x25 + x35 + x45 + x56 + x57 ≤ 5 (Number of officers off on Friday)

x16 + x26 + x36 + x46 + x56 + x67 ≤ 5 (Number of officers off on Saturday)

x17 + x27 + x37 + x47 + x57 + x67 ≤ 14 (Number of officers off on Sunday)∑6
i=1

∑7
j=i+1 xij = 30 (Total number of officers)

xij ≥ 0 ∀ i = 1, ..., 6, j = i+ 1, ..., 7.

5. Let the decision variables be

xi = pounds of chemical i used, i = 1, ..., 4.

The complete formulation of this problem is

min 8x1 + 12x2 + 13x3 + 15x4
s.t. x1 + x2 + x3 + x4 = 1000 (Total amount produced)

0.04x1 + 0.06x2 + 0.1x3 + 0.11x4 ≥ 50 (Quality: ingredient A)
0.02x1 + 0.05x2 + 0.03x3 + 0.09x4 ≥ 40 (Quality: ingredient B)
0.01x1 + 0.01x2 + 0.03x3 + 0.04x4 ≥ 20 (Quality: ingredient C)

x2 ≥ 100 (Least amount of chemical 2)
xi ≥ 0 ∀ i = 1, ..., 4.

The three quality constraints on A, B, and C are formulated by making some percentages large
enough. For example, for A we must have

0.04x1 + 0.06x2 + 0.1x3 + 0.11x4
x1 + x2 + x3 + x4

≥ 0.05. (1)

As we emphasized in a lecture, we must remove a nonlinear formulation like this by moving the
denominator to the RHS. Because the total amount produced must be exactly 1000 lb, i.e., x1 +
x2 + x3 + x4 = 1000, we convert the nonlinear formulation into a linear one: 0.04x1 + 0.06x2 +
0.1x3 + 0.11x4 ≥ 0.05 × 1000 = 50. The quality constraints on B and C are also obtained in the
same way.

6. Let the decision variables be

xij = ounces of chemical j used to produce drug i, i = 1, ...,m, j = 1, ..., n.

The complete formulation of this problem is

max

m∑
i=1

n∑
j=1

Pixij −
m∑
i=1

n∑
j=1

Cjxij

s.t. xij ≥Mij

n∑
k=1

xik ∀ i = 1, ...,m, j = 1, ..., n

n∑
j=1

xij ≤ Di ∀ i = 1, ...,m

m∑
i=1

xij ≤ Sj ∀ j = 1, ..., n

xij ≥ 0 ∀ i = 1, ...,m, j = 1, ..., n.
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7. To make our notation concise, we label the two refineries at Kaohsiung and Taipei as refinery 1 and
2 and the two distribution points at Hsinchu and Taichung as distribution points 1 and 2. Then
for i = 1, 2 and j = 1, 2, we define the decision variables as

wij = million barrels of “original” capacity shipped from refinery i to distribution point j, and

zij = million barrels of “additional” capacity shipped from refinery i to distribution point j.

For parameters, we denote Pij as the profit (in thousand dollars) per million barrels of oil shipped
from refinery i to distribution point j, Ci as the unit cost (in thousands) of additional capacity for
one million barrel in refinery i, Ki as the current capacity (in million barrel) in refinery i, and Dj

as the demand size (in million barrels) at distribution point j for all i = 1, 2 and j = 1, 2. With
the definitions of variables and parameters, we formulate the problem as

max 10

2∑
i=1

2∑
j=1

Pij(wij + zij)−
2∑

i=1

2∑
j=1

Cizij

s.t.

2∑
i=1

(wij + zij) ≤ Dj ∀ j = 1, 2

2∑
j=1

wij ≤ Ki ∀ i = 1, 2

wij , zij ≥ 0 ∀ i = 1, 2, j = 1, 2.

The objective function consists of two parts, the 10-year total profit and the one-time expansion
cost. The first constraint ensures that the total sales at each distribution point is at most the
demand size. The second constraint ensures that the total production quantity at each refinery
does not excess the post-expansion capacity. The last constraint is the nonnegativity constraint.

8. Omitted.
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