Operations Research, Spring 2014 Suggested Solution for Homework 4

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

- 1. (a) The standard form is
- $\begin{array}{ll} \min & x_7 \\ \text{s.t.} & x_1+2x_2+x_3+x_4=2 \\ & x_1+2x_2+x_5=3 \\ & x_1+2x_2+3x_3-x_6+x_7=3 \\ & x_i\geq 0 \quad \forall i=1,...,7. \end{array}$

The iterations for phase I are as follows:

	0	0	0	0	0	0	-1	0		1	2	3	0	0	-1	0	3
	1	2	1	1	0	0	0	$2(x_4)$		1	2	1	1	0	0	0	$2(x_4)$
	1	2	0	0	1	0	0	$3(x_5)$	\rightarrow	1	2	0	0	1	0	0	$3(x_5)$
	1	2	3	0	0	-1	1	$3(x_7)$		1	2	3	0	0	-1	1	$3(x_7)$
	0		2		0												
\rightarrow	0 ()	2	-1	0	-1	0	1		0	0	0	0	0	0	-1	0
	$1 \ 2$	2	1	1	0	0	0	$2(x_1)$,	1	2	0	$\frac{3}{2}$	0	$\frac{1}{2}$	$\frac{-1}{2}$	$\frac{3}{2}(x_1)$
	0 () .	-1	-1	1	0	0	$1(x_5)$	\rightarrow	0	0	0	$\frac{-3}{2}$	1	$\frac{-1}{2}$	$\frac{1}{2}$	$\frac{3}{2}(x_5)$
	0 0) [2	-1	0	-1	1	$1(x_7)$		0	0	1	$\frac{-1}{2}$	0	$\frac{-1}{2}$	$\frac{1}{2}$	$\frac{1}{2}(x_3)$

(b) The iterations for phase II are as follows:

_

	-4	-4	-1	0	0	0	0		0	4	0	$\frac{11}{2}$	()	$\frac{3}{2}$	$\frac{13}{2}$
-	1	2	0	$\frac{3}{2}$	0	$\frac{1}{2}$	$\frac{3}{2}(x_1)$		1	2	0	$\frac{3}{2}$	()	$\frac{1}{2}$	$\frac{3}{2}(x_1)$
	0	0	0	$\frac{-3}{2}$	1	$\frac{-1}{2}$	$\frac{3}{2}(x_5)$	/	0	0	0	$\frac{-3}{2}$	1		$\frac{-1}{2}$	$\frac{3}{2}(x_5)$
	0	0	1	$\frac{-1}{2}$	0	$\frac{-1}{2}$	$\frac{1}{2}(x_3)$		0	0	1	$\frac{-1}{2}$	() =	$\frac{-1}{2}$	$\frac{1}{2}(x_3)$
	2	0	0	$\frac{5}{2}$	0	$\frac{1}{2}$	$\frac{7}{2}$		$\frac{-1}{3}$	<u>1 –</u>	$\frac{-10}{3}$	0	0	0	$\frac{-1}{3}$	1
÷	$\frac{1}{2}$	1	0	3/4	0	$\frac{1}{4}$	$\frac{3}{4}(x_2)$	\rightarrow	$\frac{2}{3}$		$\frac{4}{3}$	0	1	0	$\frac{1}{3}$	$1(x_4)$
,	0	0	0	$\frac{-3}{2}$	1	$\frac{-1}{2}$	$\frac{3}{2}(x_5)$,	1		2	0	0	1	0	$3(x_5)$.
	0	0	1	$\frac{-1}{2}$	0	$\frac{-1}{2}$	$\frac{1}{2}(x_3)$		$\frac{1}{3}$		$\frac{2}{3}$	1	0	0	$\frac{-1}{3}$	$ 1 (x_3)$

The optimal solution to the original LP is $(x_1^*, x_2^*, x_3^*) = (0, 0, 1)$ with objective value $z^* = 1$. 2. (a) The iterations using the smallest index rule are as follows:

0	2	0	4	0	10		0	0	-2	2	0	6		0	-2	-4	0	0	2
0	3	0	2	1	6	\rightarrow	0	0	-3	-1	1	0		0	1	-2	0	1	2
0	1	1	1	0	2		0	1	1	1	0	2	\rightarrow	0	1	1	1	0	2 .
1	0	0	1	0	3		1	0	0	1	0	3		1	-1	-1	0	0	1

The optimal bfs is $(x_1^*, x_2^*, x_3^*, x_4^*, x_5^*) = (1, 0, 0, 2, 2)$ with objective value $z^* = 2$.

- (b) If there exists one basic variable being 0 in one of all the iterations, we say that the LP is degenerate. In iteration 1 in part (a), the basic variable $x_5 = 0$, so the LP is degenerate.
- (c) No.
- 3. (a) $c_1 \ge 0, c_2 \ge 0.$
 - (b) $c_2 < 0, a_1 \le 0.$
 - (c) b = 0.
 - (d) $c_1 < 0, a_3b \ge 12.$
 - (e) $c_1 \ge 0, c_2 \ge 0, c_1 c_2 = 0.$
 - (f) $c_1 \ge 0, c_2 = 0, a_1 \le 0.$
- 4. (a) Because the constraint $w \ge \max\{x_1, x_2\}$ will be binding at any optimal solution for the minimization problem, w will be equal to $\max\{x_1, x_2\}$.
 - (b) Because $\max\{x_1, x_2\}$ is to choose the bigger one between x_1 and x_2 , w must be greater or equal to both x_1 and x_2 , i.e., $w \ge x_1$ and $w \ge x_2$. Moreover, as long as $w \ge x_1$ and $w \ge x_2$, w will be greater than or equal to $\max\{x_1, x_2\}$. Therefore, $w \ge \max\{x_1, x_2\}$ is equivalent to $w \ge x_1$ and $w \ge x_2$.
- 5. Let our decision variables be

x = the *x*-coordinate of the station and

y = the *y*-coordinate of the station

Denote (A_i, B_i) as the location of city *i* and F_i as the average number of fires in city *i*, *i* = 1, ..., 5. A nonlinear formulation is

min
$$\sum_{i=1}^{5} F_i \Big(|x - A_i| + |y - B_i| \Big),$$

which is equivalent to

$$\min \sum_{i=1}^{5} F_i \left(u_i + v_i \right)$$

s.t. $u_i \ge |x - A_i| \quad \forall i = 1, ..., 5$
 $v_i \ge |y - B_i| \quad \forall i = 1, ..., 5$
 $x, y, u_i, y_i \ge 0 \quad \forall i = 1, ..., 5$

because the constraints $u_i \ge |x - A_i|$ and $v_i \ge |y - B_i|$ will be binding at any optimal solution. The above formulation can be further linearized into

$$\min \sum_{i=1}^{5} F_i \left(u_i + v_i \right)$$

s.t. $u_i \ge x - A_i \quad \forall i = 1, ..., 5$
 $u_i \ge A_i - x \quad \forall i = 1, ..., 5$
 $v_i \ge y - B_i \quad \forall i = 1, ..., 5$
 $v_i \ge B_i - y \quad \forall i = 1, ..., 5$
 $x, y, u_i, v_i \ge 0 \quad \forall i = 1, ..., 5$

6. I have tried my best to read the textbook in the past seven days.