Operations Research, Spring 2014
 Suggested Solution for Homework 4

Instructor: Ling-Chieh Kung
Department of Information Management National Taiwan University

1. (a) The standard form is

$$
\begin{array}{cl}
\min & x_{7} \\
\text { s.t. } & x_{1}+2 x_{2}+x_{3}+x_{4}=2 \\
& x_{1}+2 x_{2}+x_{5}=3 \\
& x_{1}+2 x_{2}+3 x_{3}-x_{6}+x_{7}=3 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 7
\end{array}
$$

The iterations for phase I are as follows:

$$
\begin{aligned}
& \begin{array}{ccccccc|c}
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
\hline 1 & 2 & 1 & 1 & 0 & 0 & 0 & 2\left(x_{4}\right) \\
1 & 2 & 0 & 0 & 1 & 0 & 0 & 3\left(x_{5}\right) \\
1 & 2 & 3 & 0 & 0 & -1 & 1 & 3\left(x_{7}\right)
\end{array} \rightarrow \begin{array}{ccccccc|c}
1 & 2 & 3 & 0 & 0 & -1 & 0 & 3 \\
\hline \begin{array}{|c}
1 \\
2
\end{array} & 1 & 1 & 0 & 0 & 0 & 2\left(x_{4}\right) \\
1 & 2 & 0 & 0 & 1 & 0 & 0 & 3\left(x_{5}\right) \\
1 & 2 & 3 & 0 & 0 & -1 & 1 & 3\left(x_{7}\right)
\end{array} \\
& \rightarrow \begin{array}{ccccccc|c}
0 & 0 & 2 & -1 & 0 & -1 & 0 & 1 \\
\hline 1 & 2 & 1 & 1 & 0 & 0 & 0 & 2\left(x_{1}\right) \\
0 & 0 & -1 & -1 & 1 & 0 & 0 & 1\left(x_{5}\right) \\
0 & 0 & 2 & -1 & 0 & -1 & 1 & 1\left(x_{7}\right)
\end{array} \rightarrow \begin{array}{ccccccc|c}
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
\hline 1 & 2 & 0 & \frac{3}{2} & 0 & \frac{1}{2} & \frac{-1}{2} & \frac{3}{2}\left(x_{1}\right) \\
0 & 0 & 0 & \frac{-3}{2} & 1 & \frac{-1}{2} & \frac{1}{2} & \frac{3}{2}\left(x_{5}\right) \\
0 & 0 & 1 & \frac{-1}{2} & 0 & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2}\left(x_{3}\right)
\end{array}
\end{aligned}
$$

(b) The iterations for phase II are as follows:

The optimal solution to the original LP is $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)=(0,0,1)$ with objective value $z^{*}=1$.
2. (a) The iterations using the smallest index rule are as follows:

$$
\begin{array}{ccccc|c}
0 & 2 & 0 & 4 & 0 & 10 \\
\hline 0 & 3 & 0 & 2 & 1 & 6 \\
0 & 1 & 1 & 1 & 0 & 2 \\
1 & 0 & 0 & 1 & 0 & 3
\end{array} \rightarrow \begin{array}{ccccc|c}
0 & 0 & -2 & 2 & 0 & 6 \\
\hline 0 & 0 & -3 & -1 & 1 & 0 \\
0 & 1 & 1 & \boxed{1} & 0 & 2 \\
1 & 0 & 0 & 1 & 0 & 3
\end{array} \rightarrow \rightarrow \begin{array}{ccccc|c}
0 & -2 & -4 & 0 & 0 & 2 \\
\hline 0 & 1 & -2 & 0 & 1 & 2 \\
0 & 1 & 1 & 1 & 0 & 2 \\
1 & -1 & -1 & 0 & 0 & 1
\end{array} .
$$

The optimal bfs is $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}, x_{4}^{*}, x_{5}^{*}\right)=(1,0,0,2,2)$ with objective value $z^{*}=2$.
(b) If there exists one basic variable being 0 in one of all the iterations, we say that the LP is degenerate. In iteration 1 in part (a), the basic variable $x_{5}=0$, so the LP is degenerate.
(c) No.
3. (a) $c_{1} \geq 0, c_{2} \geq 0$.
(b) $c_{2}<0, a_{1} \leq 0$.
(c) $b=0$.
(d) $c_{1}<0, a_{3} b \geq 12$.
(e) $c_{1} \geq 0, c_{2} \geq 0, c_{1} c_{2}=0$.
(f) $c_{1} \geq 0, c_{2}=0, a_{1} \leq 0$.
4. (a) Because the constraint $w \geq \max \left\{x_{1}, x_{2}\right\}$ will be binding at any optimal solution for the minimization problem, w will be equal to $\max \left\{x_{1}, x_{2}\right\}$.
(b) Because max $\left\{x_{1}, x_{2}\right\}$ is to choose the bigger one between x_{1} and x_{2}, w must be greater or equal to both x_{1} and x_{2}, i.e., $w \geq x_{1}$ and $w \geq x_{2}$. Moreover, as long as $w \geq x_{1}$ and $w \geq x_{2}$, w will be greater than or equal to $\max \left\{x_{1}, x_{2}\right\}$. Therefore, $w \geq \max \left\{x_{1}, x_{2}\right\}$ is equivalent to $w \geq x_{1}$ and $w \geq x_{2}$.
5. Let our decision variables be

$$
\begin{aligned}
& x=\text { the } x \text {-coordinate of the station and } \\
& y=\text { the } y \text {-coordinate of the station }
\end{aligned}
$$

Denote $\left(A_{i}, B_{i}\right)$ as the location of city i and F_{i} as the average number of fires in city $i, i=1, \ldots, 5$. A nonlinear formulation is

$$
\min \sum_{i=1}^{5} F_{i}\left(\left|x-A_{i}\right|+\left|y-B_{i}\right|\right)
$$

which is equivalent to

$$
\begin{array}{ll}
\min & \sum_{i=1}^{5} F_{i}\left(u_{i}+v_{i}\right) \\
\text { s.t. } & u_{i} \geq\left|x-A_{i}\right| \quad \forall i=1, \ldots, 5 \\
& v_{i} \geq\left|y-B_{i}\right| \quad \forall i=1, \ldots, 5 \\
& x, y, u_{i}, y_{i} \geq 0 \quad \forall i=1, \ldots, 5
\end{array}
$$

because the constraints $u_{i} \geq\left|x-A_{i}\right|$ and $v_{i} \geq\left|y-B_{i}\right|$ will be binding at any optimal solution. The above formulation can be further linearized into

$$
\begin{array}{ll}
\min & \sum_{i=1}^{5} F_{i}\left(u_{i}+v_{i}\right) \\
\text { s.t. } & u_{i} \geq x-A_{i} \quad \forall i=1, \ldots, 5 \\
& u_{i} \geq A_{i}-x \quad \forall i=1, \ldots, 5 \\
& v_{i} \geq y-B_{i} \quad \forall i=1, \ldots, 5 \\
& v_{i} \geq B_{i}-y \quad \forall i=1, \ldots, 5 \\
& x, y, u_{i}, v_{i} \geq 0 \quad \forall i=1, \ldots, 5
\end{array}
$$

6. I have tried my best to read the textbook in the past seven days.
