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A promise is a promise

I If you produce foods, what are important in getting an order from
restaurants and retailers?
I Customers ask “When may I get them?” and “How much may I get?”
I You need to give accurate answers immediately.
I You need to promise and keep your promise.

I Why difficult?
I You have more than 8000 customers sharing your capacity and inventory.
I Once you promise one customer, you need to immediately update the

availability information that are needed elsewhere.
I And updating requires a lot of planning and calculations.

I Read the application vignette in Section 3.1 and the article on CEIBA.

Introduction to Linear Programming 2 / 55 Ling-Chieh Kung (NTU IM)



Terminology Graphical approach Three types of LPs Simple formulation Compact formulation

Introduction

I We need a very powerful way of planning.

I In the next five weeks, we will study Linear Programming (LP).
I It is used a lot in practice.
I It also provides important theoretical properties.
I It is good starting point for all OR subjects.

I We will study:
I What kind of practical problems can be solved by LP.
I How to formulate a problem as an LP.
I How to solve an LP.
I Any many more.

I Read Chapter 3 for this lecture!
I Read Sections 3.1 to 3.3 thoroughly.
I Read Section 3.4 for many examples that we do not have time to cover.
I Read Section 3.5 after the TA session on March 3.
I Skip Section 3.6.
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Road map

I Terminology.

I The graphical approach.

I Three types of LPs.

I Simple LP formulations.

I Compact LP formulations.
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Introduction

I Linear Programming is the process of formulating and solving linear
programs (also abbreviated as LP).

I An LP is a mathematical program with some special properties.

I Let’s first introduce some concepts of mathematical programs.
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Basic elements of a program

I In general, any mathematical program can be expressed as

min f(x) (objective function)
s.t. gi(x) ≤ bi ∀i = 1, ...,m (constraints)

xj ∈ R ∀j = 1, ..., n. (decision variable)

I There are m constraints and n variables.

I x =

 x1

...
xn

 ∈ Rn is a vector.

I f : Rn → R and gi : Rn → R are all real-valued functions.
I Mostly we will omit xj ∈ R.
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Transformation

I How about a maximization objective function?
I max f(x)⇔ min−f(x).

I How about “=” or “≥” constraints?
I gi(x) ≥ bi ⇔ −gi(x) ≤ −bi.
I gi(x) = bi ⇔ gi(x) ≤ bi and gi(x) ≥ bi, i.e., −gi(x) ≤ −bi.

max x1 − x2
s.t. −2x1 + x2 ≥ −3

x1 + 4x2 = 5.
⇔

min −x1 + x2
s.t. 2x1 − x2 ≤ 3

x1 + 4x2 ≤ 5
−x1 − 4x2 ≤ −5.
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Sign constraints

I For some reasons that will be clear in the next week, we distinguish
between two kinds of constraints:
I Sign constraints: xi ≥ 0 or xi ≤ 0.
I Functional constraints: all others.

I For a variable xi:
I It is nonnegative if xi ≥ 0.
I It is nonpositive if xi ≤ 0.
I It is unrestricted in sign (urs.) or free if it has no sign constraint.
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Feasible solutions

I For a mathematical program:
I A feasible solution satisfies all the constraints.
I An infeasible solution violates at least one constraint.

min 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.

I Feasible?
I x1 = (2, 3).
I x2 = (6, 0).
I x3 = (6, 6).
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Feasible region and optimal solutions

I The feasible region (or feasible set) is the set of feasible solutions.
I The feasible region may be empty.

I An optimal solution is a feasible solution that:
I Attains the largest objective value for a maximization problem.
I Attains the smallest objective value for a minimization problem.
I In short, no feasible solution is better than it.

I An optimal solution may not be unique.
I There may be multiple optimal solutions.
I There may be no optimal solution.
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Binding constraints

I At a solution, a constraint may be binding:1

Definition 1

Let g(·) ≤ b be an inequality constraint and x̄ be a solution. g(·) is
binding at x̄ if g(x̄) = b.

I An inequality is nonbinding at a point if it is strict at that point.
I An equality constraint is always binding at any feasible solution.

I Some examples:
I x1 + x2 ≤ 10 is binding at (x1, x2) = (2, 8).
I 2x1 + x2 ≥ 6 is nonbinding at (x1, x2) = (2, 8).
I x1 + 3x2 = 9 is binding at (x1, x2) = (6, 1).

1Binding/nonbinding constraints are also called active/inactive constraints.
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Strict constraints?

I An inequality may be strict or weak:
I It is strict if the two sides cannot be equal. E.g., x1 + x2 > 5.
I It is weak if the two sides may be equal. E.g., x1 + x2 ≥ 5.

I A “practical” mathematical program’s inequalities are all weak.
I With strict inequalities, an optimal solution may not be attainable!
I What is the optimal solution of

min x

s.t. x > 0?

I Think about budget constraints.
I You want to spend $500 to buy several things.
I Typically, you cannot spend more than $500.
I But you can spend exactly $500.
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Linear Programs
I For a mathematical program

min f(x)

s.t. gi(x) ≤ bi ∀i = 1, ...,m,

if f and gis are all linear functions, it is an LP.

I In general, an LP can be expressed as

min

n∑
j=1

cjxj

s.t.

n∑
j=1

Aijxj ≤ bi ∀i = 1, ...,m.

I Aijs: the constraint coefficients.
I bis: the right-hand-side values (RHS).
I cjs: the objective coefficients.

I Or expressed by matrices:

min cTx

s.t. Ax ≤ b.

I A ∈ Rm×n.
I b ∈ Rm.
I c ∈ Rn.
I x ∈ Rn.
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Summary

I The decision variables, objective function, and constraints.

I Functional and sign constraints.

I Feasible solutions and optimal solutions.

I Binding constraints.
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Road map

I Terminology.

I The graphical approach.

I Three types of LPs.

I Simple LP formulations.

I Compact LP formulations.
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Graphical approach

I For LPs with only two decision variables, we may solve them with the
graphical approach.

I Consider the following example:

max 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.
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Graphical approach

I Step 1: Draw the feasible region.
I Draw each constraint one by one, and then find the intersection.

max 2x1 + x2

s.t. x1 ≤ 10
x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.
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Graphical approach
I Step 2: Draw some isoquant lines.

I A line such that all points on it result in the same objective value.
I Also called isoprofit or isocost lines when it is appropriate.
I Also called indifference lines (curves) in Economics.

max 2x1 + x2

s.t. x1 ≤ 10
x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.
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Graphical approach

I Step 3: Indicate the direction to push the isoquant line.
I The direction that decreases/increases the objective value for a

minimization/maximization problem.

max 2x1 + x2

s.t. x1 ≤ 10
x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.
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Graphical approach

I Step 4: Push the isoquant line to the “end” of the feasible region.
I Stop when any further step makes all points on the isocost line infeasible.
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Graphical approach

I Step 5: Identify the binding constraints at the optimal solution.
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Graphical approach

I Step 6: Set the binding constraints to equalities and then solve the
linear system for an optimal solution.
I In the example, the binding constraints are x1 ≤ 10 and x1 + 2x2 ≤ 12.

Therefore, we solve[
1 0 10
1 2 12

]
→
[

1 0 10
0 2 2

]
→
[

1 0 10
0 1 1

]
and obtain an optimal solution (x∗

1, x
∗
2) = (10, 1).

I Step 7: Plug in the optimal solution obtained into the objective
function to get the associated objective value.
I In the example, 2x∗

1 + x∗
2 = 21.

Introduction to Linear Programming 22 / 55 Ling-Chieh Kung (NTU IM)



Terminology Graphical approach Three types of LPs Simple formulation Compact formulation

Where to stop pushing?

I Where we push the isoquant line, where will be stop at?

I Intuitively, we always stop at a “corner” (or an edge).

I Is this intuition still true for LPs with more than two variables?

I Yes! With a more rigorous definition of “corners”.
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Extreme points

I We need to first define extreme points for a set:2

Definition 2 (Extreme points)

For a set S ⊆ Rn, a point x is an extreme point if there does not exist
a three-tuple (x1, x2, λ) such that x1 ∈ S \ {x}, x2 ∈ S \ {x},
λ ∈ (0, 1), and

x = λx1 + (1− λ)x2.

2In the textbook, extreme points are called corner-point solutions.
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Optimality of extreme points

I For any LP, we have the following fact.

Proposition 1

For any LP, if there is an optimal solution, there is an extreme point
optimal solution.

I It is not saying that “if a solution is optimal, it is an extreme point!”

I This property will be very useful when we develop a method for solving
general LPs!
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Graphical approach: Summary

I Six steps:
I Step 1: Feasible region.
I Step 2: Isoquant line.
I Step 3: Direction to push (i.e., the improving direction).
I Step 4: Push!
I Step 5: Binding constraints at an optimal solution.
I Step 6: An optimal solution and the associated objective value.

I Make your graph clear and in the right scale to avoid mistakes.
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Road map

I Terminology.

I The graphical approach.

I Three types of LPs.

I Simple LP formulations.

I Compact LP formulations.
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Three types of LPs

I For any LPs, it must be one of the following:
I Infeasible.
I Unbounded.
I Finitely optimal (having an optimal solution).

I A finitely optimal LP may have:
I A unique optimal solution.
I Multiple optimal solutions.
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Infeasibility

I An LP is infeasible if its feasible region is empty.

min 3x1 + x2
s.t. x1 + x2 ≤ 4

3x1 + x2 ≥ 9
x1 − x2 ≤ 0.
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Unboundedness

I An LP is unbounded if for any feasible solution, there is another
feasible solution that is better.

max x1 + x2
s.t. x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6.
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Unboundedness
I Note that an unbounded feasible region does not imply an

unbounded LP!
I Is it necessary?

min x1 + x2
s.t. x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6.

I If an LP is neither infeasible nor unbounded, it is finitely optimal.
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Multiple optimal solutions

I A linear program may have multiple optimal solutions.

min x1 + 2x2
s.t. x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6
x2 ≥ 0.

I If the slope of the isoquant line is identical to that of one constraint,
will we always have multiple optimal solutions?
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Summary

I In solving an LP (or any mathematical program) in practice, we only
want to find an optimal solution, not all.
I All we want is to make an optimal decision.
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Road map

I Terminology.

I The graphical approach.

I Three types of LPs.

I Simple LP formulations.

I Compact LP formulations.
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Introduction

I It is important to learn how to model a practical situation as an LP.
I Once you do so, you have “solved” the problem.

I This process is typically called LP formulation or modeling.

I Here we will give you two examples of LP formulation.
I We will do more in lectures, TA sessions, homework, case assignments,

exams, and (most likely) the final project.
I Practice makes perfect!

I Then we formulate large-scale problems with compact formulations.
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A product mix problem

I We produce several products to sell.

I Each product requires some resources. Resources are limited.

I We want to maximize the total sales revenue with available resources.
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Problem description

I We produce desks and tables.
I Producing a desk requires three units of wood, one hour of labor, and 50

minutes of machine time.
I Producing a table requires five units of wood, two hours of labor, and 20

minutes of machine time.

I We may sell everything we produce.

I For each day, we have
I Two hundred workers that each works for eight hours.
I Fifty machines that each runs for sixteen hours.
I A supply of 3600 units of wood.

I Desks and tables are sold at $700 and $900 per unit, respectively.
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DFSI: (1) Define variables

I What do we need to decide?

I Let

x1 = number of desks produced in a day and

x2 = number of tables produced in a day.

I With these variables, we now try to express how much we will earn
and how many resources we will consume.
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DFSI: (2a) Formulate the objective function

I We want to maximize the total sales revenue.

I Given our variables x1 and x2, the sales revenue is 700x1 + 900x2.

I The objective function is thus

max 700x1 + 900x2.
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DFSI: (2b) Formulate constraints
I For each restriction or limitation, we write a constraint.

I Summarizing data into a table typically helps:

Resource
Consumption per

Total supply
Desk Table

Wood 3 units 5 units 3600 units

Labor
1 hour 2 hours

200 workers × 8 hr/worker
hour = 1600 hours

Machine
50 minutes 20 minutes

50 machines × 16 hr/machine
time = 800 hours

I The supply of wood is limited: 3x1 + 5x2 ≤ 3600.

I The number of labor hours is limited: x1 + 2x2 ≤ 1600.
I The amount of machine time is limited: 50x1 + 20x2 ≤ 48000.

I Use the same unit of measurement!
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DFSI: (2c) Complete formulation

I Collectively, our formulation is

max
s.t.

700x1 + 900x2
3x1 + 5x2 ≤ 3600 (wood)
x1 + 2x2 ≤ 1600 (labor)

50x1 + 20x2 ≤ 48000. (machine)

is that all?3

I In any case:
I Clearly define decision variables in front of your formulation.
I Write comments after the objective function and constraints.

3Think about this and we will discuss it in the lecture.
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DFSI: (3 and 4) Solve and interpret

I The optimal solution of this LP is (884.21, 189.47).

I So the interpretation is... to produce 884.21 desks and 189.47 tables?

I Should we impose integer constraints?
I An LP with integer constraints is called an Integer Program (IP).
I Unfortunately, an IP may take an unreasonable time to solve.4

I But “producing 884.21 desks and 189.47 tables” is impossible!
I It still supports our decision making.
I We may suggest to produce, e.g., 884 desks and 189 tables.5

I It may not really be optimal.
I But we spend a very short time to make a good suggestion!

4We will discuss IP in details later in this semester.
5Why not 885 desks and 190 tables or the other two ways of rounding?
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Produce and store!

I When we are making decisions, we may also consider what will happen
in the future.

I This creates multi-period problems.

I In many cases, products produced today may be stored and then sold
in the future.
I Maybe daily capacity is not enough.
I Maybe production is cheaper today.
I Maybe the price is higher in the future.

I So the production decision must be jointly considered with the
inventory decision.
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Problem description

I We produce and sell a product.

I For the coming four days, the marketing manager has promised to
fulfill the following amount of demands:
I Days 1, 2, 3, and 4: 100, 150, 200, and 170 units, respectively.

I The unit production costs are different for different days:
I Days 1, 2, 3, and 4: $9, $12, $10, and $12 per unit, respectively.

I The prices are all fixed. So maximizing profits is the same as
minimizing costs.

I We may store a product and sell it later.
I The inventory cost is $1 per unit per day.6

I E.g., producing 620 units on day 1 to fulfill all demands costs

9× 620 + 1× 150 + 2× 200 + 3× 170 = 6640 dollars.

6Where does this inventory cost come from?
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Problem description: timing

I Timing:

I Beginning inventory + production − sales = ending inventory.
I Inventory costs are calculated according to ending inventory.
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Variables and objective function

I Let

xt = production quantity of day t, t = 1, ..., 4.

yt = ending inventory of day t, t = 1, ..., 4.

I It is important to specify “ending”!

I The objective function is

min 9x1 + 12x2 + 10x3 + 12x4 + y1 + y2 + y3 + y4.
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Constraints

I We need to keep an eye on our inventory:

I Day 1: x1 − 100 = y1.
I Day 2: y1 + x2 − 150 = y2.
I Day 3: y2 + x3 − 200 = y3.
I Day 4: y3 + x4 − 170 = y4.

I These are typically called inventory balancing constraints.

I We also need to fulfill all demands at the moment of sales:
I x1 ≥ 100, y1 + x2 ≥ 150, y2 + x3 ≥ 200, and y3 + x4 ≥ 170.

I Also, production and inventory quantities cannot be negative.
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The complete formulation

I The complete formulation is

min 9x1 + 12x2 + 10x3 + 12x4

+ y1 + y2 + y3 + y4

s.t. x1 − 100 = y1

y1 + x2 − 150 = y2

y3 + x3 − 200 = y3

y3 + x4 − 170 = y4

x1 ≥ 100

y1 + x2 ≥ 150

y2 + x3 ≥ 200

y3 + x4 ≥ 170

xt, yt ≥ 0 ∀t = 1, ..., 4.

I May we simplify the formulation?

I Inventory balancing and
nonnegativity together implies
demand fulfillment!
I Day 1: x1 − 100 = y1 and y1 ≥ 0

means x1 ≥ 100.
I So the formulation can just be

min 9x1 + 12x2 + 10x3 + 12x4

+ y1 + y2 + y3 + y4

s.t. x1 − 100 = y1

y1 + x2 − 150 = y2

y3 + x3 − 200 = y3

y3 + x4 − 170 = y4

xt, yt ≥ 0 ∀t = 1, ..., 4.
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Personnel scheduling

I Numbers of personnel required at an airport vary a lot among different
time periods.

I How many people will you hire?
I Each person works for eight hours continuously.
I They may start their shifts at different time.
I Demands of personnel (“0–2”, “2–4”, and “4-6” all need 6 persons):

0–6 6–8 8–10 10–12 12–14 14–16 16–18 18–20 22–24

6 10 15 20 16 24 28 20 10

I LP is used to save more than $6 million annually.

I Read the application vignette in Section 3.4 and the article on CEIBA.
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Road map

I Terminology.

I The graphical approach.

I Three types of LPs.

I Simple LP formulations.

I Compact LP formulations.
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Compact formulations

I Most problems in practice are of large scales.
I The number of variables and constraints are huge.

I Many variables can be grouped together:
I E.g., xt = production quantity of day t, t = 1, ..., 4.

I Many constraints can be grouped together:
I E.g., xt ≥ 0 for all t = 1, ..., 4.

I In modeling large-scale problems, we use compact formulations to
enhance readability and efficiency.

I We use the following three instruments:
I Indices (i, j, k, ...).
I Summation (

∑
).

I For all (∀).
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Compacting the objective function

I The problem:
I We have four periods.
I In each period, we first produce and then sell.
I Unsold products become ending inventories.
I Want to minimize the total cost.

I Indices:
I Because things will repeat in each period, it is natural to use an index

for periods. Let t ∈ {1, ..., 4} be the index of periods.

I The objective function:
I min 9x1 + 12x2 + 10x3 + 12x4 + y1 + y2 + y3 + y4.
I min 9x1 + 12x2 + 10x3 + 12x4 +

∑4
t=1 yt.

I If we denote the unit cost on day t as Ct, t = 1, ..., 4:

min
4∑

t=1

(Ctxt + yt).
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Compacting the constraints
I The original constraints:

I x1 − 100 = y1, y1 + x2 − 150 = y2, y2 + x3 − 200 = y3, y3 + x4 − 170 = y4.

I Let’s denote the demand on day t as Dt, t = 1, ..., 4.

I The compact constraint:
I For t = 2, ..., 4 : yt−1 + xt −Dt = yt.
I We cannot apply this to day 1 as y0 is undefined!

I To group the four constraints into one compact constraint, we add an
additional decision variable y0:

yt = ending inventory of day t, t = 0, ..., 4.

I Then the set of inventory balancing constraints are written as

yt−1 + xt −Dt = yt ∀t = 1, ..., 4

I Certainly we need to set up the initial inventory: y0 = 0.
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The complete compact formulation

I The compact formulation is

min

4∑
t=1

(Ctxt + yt)

s.t. yt−1 + xt −Dt = yt ∀t = 1, ..., 4

y0 = 0

xt, yt ≥ 0 ∀t = 1, ..., 4.

I Do not forget “∀t = 1, ..., 4”! Without that, the formulation is wrong.
I Nonnegativity constraints for multiple sets of variables can be combined

to save some “≥ 0”.

I One convention is to:
I Use lowercase letters for variables (e.g., xt).
I Use uppercase letters for parameters (e.g., Ct).
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Parameter declaration

I When creating parameter sets, we write something like

denote Ct as the unit production cost on day t, t = 1, ..., 4.

I Do not need to specify values, even though we have those values.
I Need to specify the range through indices.

I Parameter declarations should be at the beginning of the formulation.

I Parameters and variables are just different.
I Variables are those to be determined. We do have know there values

before we solve the model.
I Parameters are given with known values.
I Parameters are exogenous and variables are endogenous.
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