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Introduction

» For business, we study how to formulate LPs.
» For engineering, we study how to solve LPs.

» For science, we study mathematical properties of LPs.

» We will study Linear Programming duality.
» It still has important applications.
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Road map

» Primal-dual pairs.
» Duality theorems.

» Shadow prices.
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Upper bounds of a maximization LP

» Consider the following LP

z"=max 4x; + 5bBry + 8xj
st. 1 + 229 + 3x3
2rx1  + To +  2z3

1’120, 56220, I3ZO

INIA
S

» Suppose the LP is very hard to solve.
» Your friend proposes a solution & = (%, 1,1) with 2 = 15.

» If we know 2", we may compare Z with z*.

» How to evaluate the performance of & without solving the LP?
» If we can find an upper bound of z*, that works!

» 2" cannot be greater than the upper bound.
» So if £ is close to the upper bound, & is quite good."

You know 97 is quite high without knowing the highest in this class.
| |
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Upper bounds of a maximization LP

» How to find an upper bound of z* for

z"=max 4xr; + bBry + 8xj
st. x1 + 229 + 323 < 6
2r1 4+ x2 + 223 < 4
xlzo, .’EQZO, m3207

» How about this: Multiply the first constraint by 2, multiply the second
constraint by 1, and then add them together:

2(x1 4 229+ 3x3) + (201 + 22+ 223) <2x6+4
< 4xq1 + bao + 8xz < 16.

» Compare this with the objective function, we know z* < 16.
» Maybe z* is exactly 16 (and the upper bound is tight). However, we do
not know it here.
» Z =15 1is close to z* = 16, so T is quite good.
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Upper bounds of a maximization LP

» How to find an upper bound of z* for this one?

z*=max 3x1 + 4z + 8z3
st. x1 + 2x9 + 3x3 <
2.’131 + Tro + 2.’133 S 4
iElZO, xQZOa $320

(=)

» 16 is also an upper bound:

3x1 + 4xo + 8x3
< 4z + 5xo + 83 (because x1; > 0, xz2 > 0)
= 2(z1 + 222 + 3x3) + (221 + 2 + 2x3)
<2x6+4=16.
» It is quite likely that 16 is not a tight upper bound and there is a
better one. How to improve our upper bound?
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Better upper bounds?

z*=max 3xz1 + 4x2 + 8z3
s.t. 1 + 2x2 + 3x3

21 +  ®m2 + 2z3

120, 220, z3 > 0.

ININ

» Changing coefficients multiplied on the two constraints modifies the
proposed upper bound.

» Different coefficients result in different linear combinations.

> Let’s call the two coefficients y; and y-, respectively:

r1 + 2x9  + 3r3 < 6 (Xyl)
2¢7 + Tro + 203 < 4 (Xyg)
(y1 +2y2)z1 + 2y +y2)ze + (Byr +2y2)r3 < 6y1 + 4y

» We need y1 > 0 and y2 > 0 to preserve the “<”.
» When do we have z* < 6y; + 4ys?
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Linear Programming Duality 7 /39 Ling-Chieh Kung (NTU IM)




Primal-dual pairs Duality theorems Shadow prices
0O0000@000000000 000000000 0000000000000
: :

Looking for the lowest upper bound

> So we look for two variables y; and y»2 such that:
» y; >0 and y2 > 0.
» 3 <y +2y2, 4 < 2y1 +y2, and 8 < 3y1 + 2y0.
» Then z* < 6y1 + 4ys.
» To try our best to look for an upper bound, we minimize 6y; + 4ys.
We are solving another LP!

max 3xr1 + 4x2 + 8z min - 6y1 -+ Ay

s.t. r1 + 2292 + 33 < 6 Zl Y2 >_ 3
< 2 1 ‘I’ 1/2 4
21 + xo + 23 4 " >—

z1 >0, 22 >0, 23 > 0.
t= 2= i= y1 20, y2 > 0.

» We call the original LP the primal LP and the new one its dual LP.

» This idea applies to any LP. Let’s see more examples.

: :
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Nonpositive or free variables

» Suppose variables are not all nonnegative:

z*=max 3x1 + 4z + 8z3

s.t. r1 + 2z 4+ 3x3 < 6
207, + 1y + 223 < 4
1 >0, o <0, x3 urs.
» If we want
3r; + 4xe + 8x3

< (i +2p)rr + Qyrtye)re + 3y + 2y2)rs,

now we need

1+ 2y > 3 because z1 > 0,
29 + y2 < 4 because x5 < 0, and
3y17. + 2y = 8 because x3 is free.
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Nonpositive or free variables
» So the primal and dual LPs are

max 3x1 + 4x2 + 8z3 i G Ay
st.  y1 4+ 22 > 3
st. 1 4+ 2z2 + 3z3 < 6 and 9 + < 4
2z1 + w2 + 223 < 4 i o=
x1 >0, 20 <0, z3 urs v =08
it y1 20, y2>0

» Some observations:
» Primal max = Dual min.
» Primal objective = Dual RHS.
» Primal RHS = Dual objective.

» Moreover:
» Primal “> 0” variable = Dual “>” constraint.
» Primal “< 0” variable = Dual “<” constraint.
» Primal free variable = Dual “=" constraint.

» What if we have “>” or “=" primal constraints?

: :
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No-less-than and equality constraints

» Suppose constraints are not all “<”:

z"=max 3x; + 4xy + 8x3
st. 1 + 229 + 3x3
21 + To + 2z3

x1 >0, z9 <0, x3 urs.

v
o

» To obtain

yi(x1 + 222 + 3x3) + y2(221 + x2 + 23) < 6y1 + 4ya,

we now need y; < 0. yo can be of any sign (i.e., free).
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Linear Programming Duality 11/39 Ling-Chieh Kung (NTU IM)




Primal-dual pairs

Duality theorems

Shadow prices

000000000 e00000 000000000 0000000000000 |
:
No-less-than and equality constraints
> So the primal and dual LPs are
max 3Jx1 + 4x2 + 8x3 min - 6y 4 dye
st. g1+ 22 > 3
st. x1 4+ 2z2 + 33 > and
— 21+ y2 < 4
2¢1 +  ®x2 + 23 =
3y1 + 2y2 = 8
z1 >0, z2 <0, x3 urs.
y1 <0, y2 urs.

> Some more observations:
» Primal “<” constraint = Dual “> 0” variable.
» Primal “>” constraint = Dual “< 0” variable.

» Primal “=” constraint = Dual free variable.

I
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The general rule

» In general, if the primal LP is

max cixry  + Cox2 + C3T3

st. Apry 4+ Apzy + Az > by
Asizr + Agexe + Az < b
Agiz1 + Asawe + Aszzs = bs

1 >0, o <0, x3 urs.,
its dual LP is

min  biyr +  baye +  b3ys

st. Auyn + Aaye + Az > o
Aoy + Azye + Azyz < o
Apyr + Aszys + Aszys = 3

y1 <0, y2 >0, y3 urs.

» Note that the constraint coefficient matrix is “transposed”.

|
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Matrix representation
» In general, if the primal LP » In matrix
representation:
max car; + CoToy  + 373
st. Apjxy 4+ Appxe + A13IE3 = b max CT.'IT
A1y +  Agozz + Axzzy = by st. Ar—=b
Agiz1 4+ Asawe + Aszzs = bs >0
3}120, 1'2207 il?gZO, -
is in the standard form, its dual LP is
) min  y7b
min ~ biyr +  bay2 +  b3ys T g T
st. Anyr + Aaye + Asniyzs > a st. yAd=zc.
Aoy + Azye + Azys >
Apyn + Axzys + Aszys > cs.
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The dual LP for a minimization primal LP
» For a minimization LP, its dual LP is to maximize the lower bound.
» Rules for the directions of variables and constraints are reversed:

min 3xz1 + 4x2 + 8x3 max  by1 + 4y

.t. <

s.t. 1 + 2x2 + 3xs > 6 st 231 i 22’2 ; i
< 1 2 2

21 + T2 + 2x3 < 4 3y 4+ 2 = 8

x1 >0, zo2 <0, 3 urs. >0, Y2 <0
- ) _— .

» Note that

3x1 + 4xo + 8x3
> (y1 + 2y2)x1 + (291 + y2)w2 + (By1 + 2y2) 3
> (21 + 2x9 + 3x3)y1 + (221 + 22 + 223) Y2
> 6y1 + 4yo.
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Duality theorems

The general rule, uniqueness, and symmetry
» The general rule for finding the dual LP:

Obj. function | max | min | Obj. function

< >0
Constraint > <0 Variable
= urs.
>0 >
Variable <0 < Constraint
urs. =

> If the primal LP is a maximization problem, do it from left to right.
» If the primal LP is a minimization problem, do it from right to left.

Proposition 1 (Uniqueness and symmetry of duality)

For any primal LP, there is a unique dual, whose dual is the primal.

:
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Examples of primal-dual pairs

» Example 1:

min 27 + 32 max 9y1 + 6y2 + 8ys

s.t. 4x1 + ro < 9
- 1. >
o > 6 o st dyn + oy i— 2y3 2 ;
2%1 — X2 2 8 b < 0 > O >y30 o
r1 <0, 2 urs. =t =t Y20
» Example 2:
max 3r1 — T2 min 6y1 — 4yo

st. x1 4+ 2z = 6 N st. y1 4+ 3y2 = 3
3z1 + 32 < -4 21 + 3y > -1

xp urs., ra > 0. Y1 urs., y2 > 0.
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Road map

» Primal-dual pairs.
» Duality theorems.

» Shadow prices.
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Duality theorems

» Duality provides many interesting properties.

» We will illustrate these properties for standard form primal LPs:

max ¢z min 47b
5.t fizob st. yTA>cl. (1)

» It can be shown that all the properties that we will introduce apply to
other primal-dual pairs.

| |
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Weak duality

T

max c¢'x min  y7b
s.t. Aw:b =4 T T
.t >c.

2> 0. st. yA>c

» The dual LP provides an upper bound of the primal LP.

Proposition 2 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual feasible,
then Tz < yT'b.

Proof. As long as x and y are primal and dual feasible, we have

T

'z < yTAr (x>0and yTA>cTh)
< y'p  (Az=0b).
Therefore, weak duality holds. O

| |
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Sufficiency of optimality

T
max ¢ T . T
min  y*b

s.t. AiE:b = T T

t. >c .

z>0. st. y"A>c

» We now have a sufficient condition for optimal solutions.

Proposition 3 (Sufficient condition for optimality)

If & and § are primal and dual feasible and c'% = §Tb, then T and j
are primal and dual optimal.

Proof. For all dual feasible y, we have ¢’z < yTb by weak duality. But
we are given that ¢T'Z = y7b, so we have y7b < yTb for all dual feasible
y. This just tells us that g is dual optimal. For Z it is the same. O

» Given a primal feasible solution Z, if we can find a dual feasible
solution so that there objective values are identical, T is optimal.

: :
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The dual optimal solution

T
max c x . T
min  y' b
s.t. AZE:b <~ T T
t. >c.
2> 0. st. yA>c

» If we have solved the primal LP, the dual optimal solution is there.

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if T is primal optimal with basis B, then
yT = cLAG is dual optimal.

Proof Because B is optimal, the reduced costs c5A5' Ay — ¢k > 0.
As b = cL AL Ap, we have

gTAchAglA:cBAg,l [ Ap Ay ] > [ kL ] =cr

and thus 7 is dual feasible. As y7b= chglb =clop=clz, 7z and y
have the same objective value and are thus both optimal. O

: :
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Strong duality

T

max c¢' min yTb
s.t. AZE:b <~ T T
.t. > .

2> 0. st. yA>c

» The fact that c]:';Ag,l is dual optimal implies strong duality:

Proposition 5 (Strong duality)

For the LPs defined in (1), T and § are primal and dual optimal if
and only if T and 3 are primal and dual feasible and ¢Tz = §T'b.

Proof. To prove this if-and-only-if statement:
» («<): By Proposition 3.
» (=): As cg A" is an dual optimal solution, the dual optimal objective
value is ¢§ Aglb7 which equals the primal optimal objective value ¢T Z.
As ¢ is dual optimal, 77b = c5ARz'b = "' 7.2 O
2As the dual LP may or may not have a unique optimal solution, § and chgl

may or may not be identical. In either case, the statement holds.
| |
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Implications of strong duality

» Strong duality certainly implies weak duality.

» Weak duality says that the dual LP provides a bound.
> Strong duality says that the bound is tight, i.e., cannot be improved.

» The primal and dual LPs are equivalent.
» Given the result of one LP, we may predict the result of its dual:

Dual
Primal
Infeasible  Unbounded  Finitely optimal
Infeasible 4 Vv X
Unbounded Vv X X
Finitely optimal X X V4

4/ means possible, X means impossible.

Primal unbounded =- no upper bound =- dual infeasible.

Primal finitely optimal = finite objective value = dual finitely optimal.
If primal is infeasible, the dual may still be infeasible (by examples).

vvyVvy

: :
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Complementary slackness
» Consider w, the slack variables of the dual LP:

min  y7b
st. ylA—wl =t (2)
w > 0.

Proposition 6 (Complementary slackness)

For the primal defined in (1) and dual defined in (2), T and (g, w) are
primal and dual optimal if and only if Tz = 0.

Proof. We have ¢T'z = (g7 A —wT)z = g7 Az — wTz = y7b — wl'z.
Therefore, w?'z = 0 if and only if ¢7'z = §7b, i.e.,  and (7, w) are
primal and dual optimal according to strong duality. O
» Note that @7z = 0 if and only if @;%; = 0 for all i as Z > 0 and @ > 0.
> If a dual (respectively, primal) constraint is nonbinding, the
corresponding primal (respectively, dual) variable is zero.

: :
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Why duality?

» Why duality? Given an LP:
» We may solve it directly.
» Or we may solve the dual LP and then get the primal optimal solution
(by Proposition 4).
» Why bothering?

> Recall that the computation time of the simplex method is roughly

proportional to m?3.

> m is the number of functional constraints of the original LP.
» And n, the number of variables of the original LP, does not matter a lot.

> If m > n, solving the dual LP can take a significantly shorter time
than solving the primal!

» There are many other benefits for having duality. We will see some
more in this course.

» Read Sections 6.1, 6.3, and 6.4 carefully.

: :
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Road map

» Primal-dual pairs.
» Duality theorems.

» Shadow prices.
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A product mix problem

» Suppose we produce tables and chairs with wood and labors. In total
we have six units of wood and six labor hours.

» Each table is sold at $3 and requires 2 units of wood and 1 labor hour.
» Each chair is sold at $§1 and requires 1 unit of wood and 2 labor hours.

How may we formulate an LP to maximize our sales revenue?

» The formulation is

21 = number of tables produced
T9 = number of chairs produced.

max 3r; + 9
st. 2xp + 1wy <
1 + 2xy <

: :
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“What-if” questions

» In practice, people often ask “what-if” questions:

» What if the unit price of chairs becomes $27
» What if each table requires 3 unit of wood?
» What if we have 10 units of woord?

» Why what-if questions?
» Parameters may fluctuate.

» Estimation of parameters may be inaccurate.
» Looking for ways to improve the business.

» For realistic problems, what-if questions can be hard.

» Even though it may be just a tiny modification of one parameter, the
optimal solution may change a lot.

» The tool for answering what-if questions is sensitivity analysis.

: :
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Humboldt Redwood

Humboldt
mbolde, .

NATURALLY STRONG, NATURALLY BEAUTIFUL

» Pacific Lumber Company (now Humboldt Redwood) has over 200,000
acres of forests and five mills in Humboldt County.
» Sustainability is important in making operational decisions.
» They contracted with an OR team to develop a 120-year forest
ecosystem management plan.
» The LP optimizes the timberland operations for maximizing profitability
while satisfying constraints including sustainability.
» The model has around 8,500 functional constraints and 353,000 variables.
» The environment keeps changing!
» E.g., climate, supply and demand, logging costs, and regulations.
> Sensitivity analysis is applied.
» Read the application vignette in Section 6.7 and the article on CEIBA.

: :
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“What-if” questions

» In general, what-if questions can always be answered by formulating
and solving a new optimization problem from scratch.

» But this may be too time consuming!

» By sensitivity analysis techniques:

» The original optimal tableau provides useful information.

» We typically start from the original optimal bfs and do just a few
iterations to reach the new optimal bfs.

> Duality provides a theoretical background.

» Here we want to introduce just one type of what-if question: What if I
have additional units of a certain resource?
» Consider the following scenario:

» One day, a salesperson enters your office and wants to offer you one
additional unit of wood at $1. Should you accept or reject?

: :
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One more unit of wood

» To answer this question, you may
formulate a new LP:

max 3r; + X9
st. 21 + 19
1 4+ 2xa

r;, >0 Vi=1,2.

7
6

INIA

» The new objective value
2/ =3 x 3.5 =10.5 is larger than
the old objective value z* = 9.

» It is good to accept the offer (at
the unit price $1).

» We earn $0.5 as our net benefit.

AZL2
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One more labor hour

» Suppose instead of offering one
addition unit of wood, the
salesperson offers one additional
labor hour at $1.

max 3r; + 9
st. 21 +  xo
r1 + 29

z; >0 Vi=1,2.

< 6
< 7

» The new objective value is the
same as the old objective value.
» It is not worthwhile to buy it: The
objective value does not increase.
» The net loss is $1.

| |
Linear Programming Duality 33 /39 Ling-Chieh Kung (NTU IM)




Primal-dual pairs Duality theorems Shadow prices

0000000000000 00 000000000 0000000 @00000
: :

Shadow prices

» For each resource, there is a maximum amount of price we are
willing to pay for one additional unit.
» That depends on the net benefit of that one additional unit.
» For wood, this price is $1.5. For labor hours, this price is $0.

» This motivates us to define shadow prices for each constraint:

Definition 1 (Shadow price)

For an LP that has an optimal solution, the shadow price of a
constraint is the amount of objective value increased when the RHS of
that constraint is increased by 1, assuming the current optimal basis
remains optimal.

> So for our table-chair example, the shadow prices for constraints 1 and 2
are 1.5 and 0, respectively.
» For shadow prices, see Section 4.7.

> Note that we assume that the current optimal basis does not change.

: :
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Assuming the optimal basis does not change

» Consider another example:

z¥=max 3x1 + o 4 \
s.t. x1  + x2

» If we want to find the shadow price of constraint
1, we may try to solve a new LP:

z** =max 3x1 + x2

s.t. xr1  + xo <
r1 + 2x9 < 4.5

» Though z** = 13.5 and z* = 12, the shadow price
is 15 — 12 = 3, not 1.5!

» Shadow prices measure the rate of improvement.

4.5
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Signs of shadow prices

» As a shadow price measures how the objective value is increased, its
sign is determined based on how the feasible region changes:

Proposition 7 (Signs of shadow prices)

For any LP, the sign of a shadow price follows the rule below:

o i Constraint
Objective function
> =
max >0 <0 Flree
min <0 >0 Free

: :
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Nonbinding constraints’ shadow prices

» If shifting a constraint does not affect the optimal solution, the shadow
price must be zero.?

Proposition 8

Shadow prices are zero for constraints that are nonbinding at the
optimal solution.

» Now we know finding shadow prices allows us to answer the questions
regarding additional units of resources.
» But how to find all shadow prices?
» Let m be the number of constraints.

> Is there a better way than solving m LPs?
» Duality helps!

3Not all binding constraints has nonzero shadow prices. Why?
| |
Linear Programming Duality 37 /39 Ling-Chieh Kung (NTU IM)




Primal-dual pairs Duality theorems Shadow prices
000000000000000 000000000 0000000000080
: :

Dual optimal solution provide shadow prices

Proposition 9

For any LP, shadow prices equal the values of dual variables in the
dual optimal solution.

Proof. Let B be the old optimal basis and z = c5A5"b be the old
objective value. If by becomes b] = by + 1, then z becomes

1
0
2 =cEA (b—i— : ) =2+ (chgl)l.

0

So the shadow price of constraint 1 is (chg )1- In general, the
shadow price of constraint i is (c5A5");. As c5AR" is the dual
optimal solution, the proof is complete. O

: :
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An example

» What are the shadow prices?

min 6x; + 4xo

st. T 4+ x99 > 2
3r1 + x > 1

r; >0 Vi=1,2.

» We solve the dual LP
max 2y; + Yo

s.t. y1 + 3y2 < 6
v+ y2 < 4

y; >0 Vi=1,2.

The dual optimal solution is y* = (4, 0).

» So shadow prices are 4 and 0, respectively.
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