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Introduction

I For business, we study how to formulate LPs.

I For engineering, we study how to solve LPs.

I For science, we study mathematical properties of LPs.
I We will study Linear Programming duality.
I It still has important applications.
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Road map

I Primal-dual pairs.

I Duality theorems.

I Shadow prices.

Linear Programming Duality 3 / 39 Ling-Chieh Kung (NTU IM)



Primal-dual pairs Duality theorems Shadow prices

Upper bounds of a maximization LP

I Consider the following LP

z∗ = max
s.t.

4x1 + 5x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

I Suppose the LP is very hard to solve.

I Your friend proposes a solution x̂ = ( 1
2 , 1, 1) with ẑ = 15.

I If we know z∗, we may compare ẑ with z∗.
I How to evaluate the performance of x̂ without solving the LP?

I If we can find an upper bound of z∗, that works!
I z∗ cannot be greater than the upper bound.
I So if ẑ is close to the upper bound, x̂ is quite good.1

1You know 97 is quite high without knowing the highest in this class.
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Upper bounds of a maximization LP
I How to find an upper bound of z∗ for

z∗ = max
s.t.

4x1 + 5x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0?

I How about this: Multiply the first constraint by 2, multiply the second
constraint by 1, and then add them together:

2(x1 + 2x2 + 3x3) + (2x1 + x2 + 2x3) ≤ 2× 6 + 4

⇔ 4x1 + 5x2 + 8x3 ≤ 16.

I Compare this with the objective function, we know z∗ ≤ 16.
I Maybe z∗ is exactly 16 (and the upper bound is tight). However, we do

not know it here.
I ẑ = 15 is close to z∗ = 16, so x̂ is quite good.
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Upper bounds of a maximization LP
I How to find an upper bound of z∗ for this one?

z∗ = max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

I 16 is also an upper bound:

3x1 + 4x2 + 8x3

≤ 4x1 + 5x2 + 8x3 (because x1 ≥ 0, x2 ≥ 0)

= 2(x1 + 2x2 + 3x3) + (2x1 + x2 + 2x3)

≤ 2× 6 + 4 = 16.

I It is quite likely that 16 is not a tight upper bound and there is a
better one. How to improve our upper bound?
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Better upper bounds?

z∗ = max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

I Changing coefficients multiplied on the two constraints modifies the
proposed upper bound.
I Different coefficients result in different linear combinations.

I Let’s call the two coefficients y1 and y2, respectively:

x1 + 2x2 + 3x3 ≤ 6 (×y1)
2x1 + x2 + 2x3 ≤ 4 (×y2)

(y1 + 2y2)x1 + (2y1 + y2)x2 + (3y1 + 2y2)x3 ≤ 6y1 + 4y2

I We need y1 ≥ 0 and y2 ≥ 0 to preserve the “≤”.

I When do we have z∗ ≤ 6y1 + 4y2?
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Looking for the lowest upper bound

I So we look for two variables y1 and y2 such that:
I y1 ≥ 0 and y2 ≥ 0.
I 3 ≤ y1 + 2y2, 4 ≤ 2y1 + y2, and 8 ≤ 3y1 + 2y2.
I Then z∗ ≤ 6y1 + 4y2.

I To try our best to look for an upper bound, we minimize 6y1 + 4y2.
We are solving another LP!

max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

⇒

min
s.t.

6y1 + 4y2
y1 + 2y2 ≥ 3

2y1 + y2 ≥ 4
3y1 + 2y2 ≥ 8

y1 ≥ 0, y2 ≥ 0.

I We call the original LP the primal LP and the new one its dual LP.

I This idea applies to any LP. Let’s see more examples.
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Nonpositive or free variables
I Suppose variables are not all nonnegative:

z∗ = max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

I If we want

3x1 + 4x2 + 8x3

≤ (y1 + 2y2)x1 + (2y1 + y2)x2 + (3y1 + 2y2)x3,

now we need

y1 + 2y2 ≥ 3 because x1 ≥ 0,
2y1 + y2 ≤ 4 because x2 ≤ 0, and
3y1 + 2y2 = 8 because x3 is free.
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Nonpositive or free variables
I So the primal and dual LPs are

max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

and

min
s.t.

6y1 + 4y2
y1 + 2y2 ≥ 3

2y1 + y2 ≤ 4
3y1 + 2y2 = 8

y1 ≥ 0, y2 ≥ 0.

I Some observations:
I Primal max ⇒ Dual min.
I Primal objective ⇒ Dual RHS.
I Primal RHS ⇒ Dual objective.

I Moreover:
I Primal “≥ 0” variable ⇒ Dual “≥” constraint.
I Primal “≤ 0” variable ⇒ Dual “≤” constraint.
I Primal free variable ⇒ Dual “=” constraint.

I What if we have “≥” or “=” primal constraints?
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No-less-than and equality constraints

I Suppose constraints are not all “≤”:

z∗ = max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≥ 6
2x1 + x2 + 2x3 = 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

I To obtain

y1(x1 + 2x2 + 3x3) + y2(2x1 + x2 + 2x3) ≤ 6y1 + 4y2,

we now need y1 ≤ 0. y2 can be of any sign (i.e., free).
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No-less-than and equality constraints

I So the primal and dual LPs are

max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≥ 6
2x1 + x2 + 2x3 = 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

and

min
s.t.

6y1 + 4y2
y1 + 2y2 ≥ 3

2y1 + y2 ≤ 4
3y1 + 2y2 = 8

y1 ≤ 0, y2 urs.

I Some more observations:
I Primal “≤” constraint ⇒ Dual “≥ 0” variable.
I Primal “≥” constraint ⇒ Dual “≤ 0” variable.
I Primal “=” constraint ⇒ Dual free variable.
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The general rule
I In general, if the primal LP is

max
s.t.

c1x1 + c2x2 + c3x3

A11x1 + A12x2 + A13x3 ≥ b1
A21x1 + A22x2 + A23x3 ≤ b2
A31x1 + A32x2 + A33x3 = b3

x1 ≥ 0, x2 ≤ 0, x3 urs.,

its dual LP is

min
s.t.

b1y1 + b2y2 + b3y3
A11y1 + A21y2 + A31y3 ≥ c1
A12y1 + A22y2 + A32y3 ≤ c2
A13y1 + A23y2 + A33y3 = c3

y1 ≤ 0, y2 ≥ 0, y3 urs.

I Note that the constraint coefficient matrix is “transposed”.
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Matrix representation

I In general, if the primal LP

max
s.t.

c1x1 + c2x2 + c3x3

A11x1 + A12x2 + A13x3 = b1
A21x1 + A22x2 + A23x3 = b2
A31x1 + A32x2 + A33x3 = b3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

is in the standard form, its dual LP is

min
s.t.

b1y1 + b2y2 + b3y3
A11y1 + A21y2 + A31y3 ≥ c1
A12y1 + A22y2 + A32y3 ≥ c2
A13y1 + A23y2 + A33y3 ≥ c3.

I In matrix
representation:

max cTx

s.t. Ax = b

x ≥ 0

and

min yT b

s.t. yTA ≥ cT .
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The dual LP for a minimization primal LP

I For a minimization LP, its dual LP is to maximize the lower bound.

I Rules for the directions of variables and constraints are reversed:

min
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≥ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

⇒

max
s.t.

6y1 + 4y2
y1 + 2y2 ≤ 3

2y1 + y2 ≥ 4
3y1 + 2y2 = 8

y1 ≥ 0, y2 ≤ 0.

I Note that

3x1 + 4x2 + 8x3

≥ (y1 + 2y2)x1 + (2y1 + y2)x2 + (3y1 + 2y2)x3

≥ (x1 + 2x2 + 3x3)y1 + (2x1 + x2 + 2x3)y2

≥ 6y1 + 4y2.
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The general rule, uniqueness, and symmetry
I The general rule for finding the dual LP:

Obj. function max min Obj. function

≤ ≥ 0
Constraint ≥ ≤ 0 Variable

= urs.

≥ 0 ≥
Variable ≤ 0 ≤ Constraint

urs. =

I If the primal LP is a maximization problem, do it from left to right.
I If the primal LP is a minimization problem, do it from right to left.

Proposition 1 (Uniqueness and symmetry of duality)

For any primal LP, there is a unique dual, whose dual is the primal.
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Examples of primal-dual pairs

I Example 1:

min
s.t.

2x1 + 3x2

4x1 + x2 ≤ 9
x1 ≥ 6

2x1 − x2 ≥ 8

x1 ≤ 0, x2 urs.

⇔

max
s.t.

9y1 + 6y2 + 8y3
4y1 + y2 + 2y3 ≥ 2
y1 − y3 = 3

y1 ≤ 0, y2 ≥ 0, y3 ≥ 0.

I Example 2:

max
s.t.

3x1 − x2

x1 + 2x2 = 6
3x1 + 3x2 ≤ −4

x1 urs., x2 ≥ 0.

⇔

min
s.t.

6y1 − 4y2
y1 + 3y2 = 3

2y1 + 3y2 ≥ −1

y1 urs., y2 ≥ 0.
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Road map

I Primal-dual pairs.

I Duality theorems.

I Shadow prices.
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Duality theorems

I Duality provides many interesting properties.

I We will illustrate these properties for standard form primal LPs:

max cTx
s.t. Ax = b

x ≥ 0.
⇔ min yT b

s.t. yTA ≥ cT .
(1)

I It can be shown that all the properties that we will introduce apply to
other primal-dual pairs.
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Weak duality

max cTx
s.t. Ax = b

x ≥ 0.
⇔ min yT b

s.t. yTA ≥ cT .

I The dual LP provides an upper bound of the primal LP.

Proposition 2 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual feasible,
then cTx ≤ yT b.

Proof. As long as x and y are primal and dual feasible, we have

cTx ≤ yTAx (x ≥ 0 and yTA ≥ cT )
≤ yT b (Ax = b).

Therefore, weak duality holds.
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Sufficiency of optimality

max cTx
s.t. Ax = b

x ≥ 0.
⇔ min yT b

s.t. yTA ≥ cT .

I We now have a sufficient condition for optimal solutions.

Proposition 3 (Sufficient condition for optimality)

If x̄ and ȳ are primal and dual feasible and cT x̄ = ȳT b, then x̄ and ȳ
are primal and dual optimal.

Proof. For all dual feasible y, we have cT x̄ ≤ yT b by weak duality. But
we are given that cT x̄ = ȳT b, so we have ȳT b ≤ yT b for all dual feasible
y. This just tells us that ȳ is dual optimal. For x̄ it is the same.

I Given a primal feasible solution x̄, if we can find a dual feasible
solution so that there objective values are identical, x̄ is optimal.
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The dual optimal solution

max cTx
s.t. Ax = b

x ≥ 0.
⇔ min yT b

s.t. yTA ≥ cT .

I If we have solved the primal LP, the dual optimal solution is there.

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if x̄ is primal optimal with basis B, then
ȳT = cTBA

−1
B is dual optimal.

Proof. Because B is optimal, the reduced costs cTBA
−1
B AN − cTN ≥ 0.

As cTB = cTBA
−1
B AB , we have

ȳTA = cTBA
−1
B A = cTBA

−1
B

[
AB AN

]
≥
[
cTB cTN

]
= cT

and thus ȳ is dual feasible. As ȳT b = cTBA
−1
B b = cTBxB = cTx, x̄ and ȳ

have the same objective value and are thus both optimal.
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Strong duality

max cTx
s.t. Ax = b

x ≥ 0.
⇔ min yT b

s.t. yTA ≥ cT .

I The fact that cTBA
−1
B is dual optimal implies strong duality:

Proposition 5 (Strong duality)

For the LPs defined in (1), x̄ and ȳ are primal and dual optimal if
and only if x̄ and ȳ are primal and dual feasible and cT x̄ = ȳT b.

Proof. To prove this if-and-only-if statement:
I (⇐): By Proposition 3.
I (⇒): As cTBA

−1
B is an dual optimal solution, the dual optimal objective

value is cTBA
−1
B b, which equals the primal optimal objective value cT x̄.

As ȳ is dual optimal, ȳT b = cTBA
−1
B b = cT x̄.2

2As the dual LP may or may not have a unique optimal solution, ȳ and cTBA−1
B

may or may not be identical. In either case, the statement holds.
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Implications of strong duality
I Strong duality certainly implies weak duality.

I Weak duality says that the dual LP provides a bound.
I Strong duality says that the bound is tight, i.e., cannot be improved.

I The primal and dual LPs are equivalent.

I Given the result of one LP, we may predict the result of its dual:

Primal
Dual

Infeasible Unbounded Finitely optimal

Infeasible
√ √

×
Unbounded

√
× ×

Finitely optimal × ×
√

I
√

means possible, × means impossible.
I Primal unbounded ⇒ no upper bound ⇒ dual infeasible.
I Primal finitely optimal ⇒ finite objective value ⇒ dual finitely optimal.
I If primal is infeasible, the dual may still be infeasible (by examples).
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Complementary slackness
I Consider w, the slack variables of the dual LP:

min yT b

s.t. yTA− wT = cT

w ≥ 0.

(2)

Proposition 6 (Complementary slackness)

For the primal defined in (1) and dual defined in (2), x̄ and (ȳ, w̄) are
primal and dual optimal if and only if w̄T x̄ = 0.

Proof. We have cT x̄ = (ȳTA− w̄T )x̄ = ȳTAx̄− w̄T x̄ = ȳT b− w̄T x̄.
Therefore, w̄T x̄ = 0 if and only if cT x̄ = ȳT b, i.e., x̄ and (ȳ, w̄) are
primal and dual optimal according to strong duality.
I Note that w̄T x̄ = 0 if and only if w̄ix̄i = 0 for all i as x̄ ≥ 0 and w̄ ≥ 0.
I If a dual (respectively, primal) constraint is nonbinding, the

corresponding primal (respectively, dual) variable is zero.
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Why duality?

I Why duality? Given an LP:
I We may solve it directly.
I Or we may solve the dual LP and then get the primal optimal solution

(by Proposition 4).

I Why bothering?

I Recall that the computation time of the simplex method is roughly
proportional to m3.
I m is the number of functional constraints of the original LP.
I And n, the number of variables of the original LP, does not matter a lot.

I If m� n, solving the dual LP can take a significantly shorter time
than solving the primal!

I There are many other benefits for having duality. We will see some
more in this course.

I Read Sections 6.1, 6.3, and 6.4 carefully.
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Road map

I Primal-dual pairs.

I Duality theorems.

I Shadow prices.
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A product mix problem
I Suppose we produce tables and chairs with wood and labors. In total

we have six units of wood and six labor hours.
I Each table is sold at $3 and requires 2 units of wood and 1 labor hour.
I Each chair is sold at $1 and requires 1 unit of wood and 2 labor hours.

How may we formulate an LP to maximize our sales revenue?

I The formulation is

x1 = number of tables produced

x2 = number of chairs produced.

max
s.t.

3x1 + x2

2x1 + x2 ≤ 6
x1 + 2x2 ≤ 6

xi ≥ 0 ∀i = 1, 2.

I The optimal solution is x∗ = (3, 0).
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“What-if” questions

I In practice, people often ask “what-if” questions:
I What if the unit price of chairs becomes $2?
I What if each table requires 3 unit of wood?
I What if we have 10 units of woord?

I Why what-if questions?
I Parameters may fluctuate.
I Estimation of parameters may be inaccurate.
I Looking for ways to improve the business.

I For realistic problems, what-if questions can be hard.
I Even though it may be just a tiny modification of one parameter, the

optimal solution may change a lot.

I The tool for answering what-if questions is sensitivity analysis.
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Humboldt Redwood

I Pacific Lumber Company (now Humboldt Redwood) has over 200,000
acres of forests and five mills in Humboldt County.

I Sustainability is important in making operational decisions.
I They contracted with an OR team to develop a 120-year forest

ecosystem management plan.
I The LP optimizes the timberland operations for maximizing profitability

while satisfying constraints including sustainability.
I The model has around 8,500 functional constraints and 353,000 variables.

I The environment keeps changing!
I E.g., climate, supply and demand, logging costs, and regulations.
I Sensitivity analysis is applied.

I Read the application vignette in Section 6.7 and the article on CEIBA.
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“What-if” questions

I In general, what-if questions can always be answered by formulating
and solving a new optimization problem from scratch.

I But this may be too time consuming!

I By sensitivity analysis techniques:
I The original optimal tableau provides useful information.
I We typically start from the original optimal bfs and do just a few

iterations to reach the new optimal bfs.
I Duality provides a theoretical background.

I Here we want to introduce just one type of what-if question: What if I
have additional units of a certain resource?

I Consider the following scenario:
I One day, a salesperson enters your office and wants to offer you one

additional unit of wood at $1. Should you accept or reject?
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One more unit of wood

I To answer this question, you may
formulate a new LP:

max
s.t.

3x1 + x2

2x1 + x2 ≤ 7
x1 + 2x2 ≤ 6

xi ≥ 0 ∀i = 1, 2.

I The new objective value
z′ = 3× 3.5 = 10.5 is larger than
the old objective value z∗ = 9.

I It is good to accept the offer (at
the unit price $1).
I We earn $0.5 as our net benefit.
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One more labor hour

I Suppose instead of offering one
addition unit of wood, the
salesperson offers one additional
labor hour at $1.

max
s.t.

3x1 + x2

2x1 + x2 ≤ 6
x1 + 2x2 ≤ 7

xi ≥ 0 ∀i = 1, 2.

I The new objective value is the
same as the old objective value.

I It is not worthwhile to buy it: The
objective value does not increase.
I The net loss is $1.
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Shadow prices
I For each resource, there is a maximum amount of price we are

willing to pay for one additional unit.
I That depends on the net benefit of that one additional unit.
I For wood, this price is $1.5. For labor hours, this price is $0.

I This motivates us to define shadow prices for each constraint:

Definition 1 (Shadow price)

For an LP that has an optimal solution, the shadow price of a
constraint is the amount of objective value increased when the RHS of
that constraint is increased by 1, assuming the current optimal basis
remains optimal.

I So for our table-chair example, the shadow prices for constraints 1 and 2
are 1.5 and 0, respectively.

I For shadow prices, see Section 4.7.

I Note that we assume that the current optimal basis does not change.
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Assuming the optimal basis does not change

I Consider another example:

z∗ = max
s.t.

3x1 + x2

x1 + x2 ≤ 4
x1 + 2x2 ≤ 4.5

xi ≥ 0 ∀i = 1, 2.

I If we want to find the shadow price of constraint
1, we may try to solve a new LP:

z∗∗ = max
s.t.

3x1 + x2

x1 + x2 ≤ 5
x1 + 2x2 ≤ 4.5

xi ≥ 0 ∀i = 1, 2.

I Though z∗∗ = 13.5 and z∗ = 12, the shadow price
is 15− 12 = 3, not 1.5!

I Shadow prices measure the rate of improvement.
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Signs of shadow prices

I As a shadow price measures how the objective value is increased, its
sign is determined based on how the feasible region changes:

Proposition 7 (Signs of shadow prices)

For any LP, the sign of a shadow price follows the rule below:

Objective function
Constraint

≤ ≥ =

max ≥ 0 ≤ 0 Free
min ≤ 0 ≥ 0 Free
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Nonbinding constraints’ shadow prices

I If shifting a constraint does not affect the optimal solution, the shadow
price must be zero.3

Proposition 8

Shadow prices are zero for constraints that are nonbinding at the
optimal solution.

I Now we know finding shadow prices allows us to answer the questions
regarding additional units of resources.

I But how to find all shadow prices?
I Let m be the number of constraints.
I Is there a better way than solving m LPs?
I Duality helps!

3Not all binding constraints has nonzero shadow prices. Why?
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Dual optimal solution provide shadow prices

Proposition 9

For any LP, shadow prices equal the values of dual variables in the
dual optimal solution.

Proof. Let B be the old optimal basis and z = cTBA
−1
B b be the old

objective value. If b1 becomes b′1 = b1 + 1, then z becomes

z′ = cTBA
−1
B

(
b +


1
0
...
0


)

= z +
(
cTBA

−1
B

)
1
.

So the shadow price of constraint 1 is (cTBA
−1
B )1. In general, the

shadow price of constraint i is (cTBA
−1
B )i. As cTBA

−1
B is the dual

optimal solution, the proof is complete.
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An example

I What are the shadow prices?

min
s.t.

6x1 + 4x2

x1 + x2 ≥ 2
3x1 + x2 ≥ 1

xi ≥ 0 ∀i = 1, 2.

I We solve the dual LP

max
s.t.

2y1 + y2
y1 + 3y2 ≤ 6
y1 + y2 ≤ 4

yi ≥ 0 ∀i = 1, 2.

The dual optimal solution is y∗ = (4, 0).

I So shadow prices are 4 and 0, respectively.
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