IM 2010: Operations Research, Spring 2014 Linear Programming Duality

Ling-Chieh Kung

Department of Information Management National Taiwan University

March 20, 2014

Introduction

- ▶ For business, we study how to formulate LPs.
- ▶ For engineering, we study how to solve LPs.
- ▶ For science, we study mathematical **properties** of LPs.
 - ► We will study Linear Programming duality.
 - It still has important applications.

Road map

▶ Primal-dual pairs.

- Duality theorems.
- Shadow prices.

Upper bounds of a maximization LP

▶ Consider the following LP

$$z^* = \max \quad 4x_1 \quad + \quad 5x_2 \quad + \quad 8x_3$$

s.t.
$$x_1 \quad + \quad 2x_2 \quad + \quad 3x_3 \quad \le \quad 6$$

$$2x_1 \quad + \quad x_2 \quad + \quad 2x_3 \quad \le \quad 4$$

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0.$$

- Suppose the LP is very hard to solve.
- ▶ Your friend proposes a solution $\hat{x} = (\frac{1}{2}, 1, 1)$ with $\hat{z} = 15$.
 - If we know z^* , we may compare \hat{z} with z^* .
 - How to evaluate the performance of \hat{x} without solving the LP?
- If we can find an **upper bound** of z^* , that works!
 - z^* cannot be greater than the upper bound.
 - So if \hat{z} is close to the upper bound, \hat{x} is quite good.¹

¹You know 97 is quite high without knowing the highest in this class.

Upper bounds of a maximization LP

• How to find an upper bound of z^* for

$$z^* = \max \quad 4x_1 \quad + \quad 5x_2 \quad + \quad 8x_3$$

s.t.
$$x_1 \quad + \quad 2x_2 \quad + \quad 3x_3 \quad \le \quad 6$$

$$2x_1 \quad + \quad x_2 \quad + \quad 2x_3 \quad \le \quad 4$$

$$x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0?$$

▶ How about this: Multiply the first constraint by 2, multiply the second constraint by 1, and then add them together:

$$2(x_1 + 2x_2 + 3x_3) + (2x_1 + x_2 + 2x_3) \le 2 \times 6 + 4$$

$$\Leftrightarrow 4x_1 + 5x_2 + 8x_3 \le 16.$$

- Compare this with the objective function, we know $z^* \leq 16$.
 - Maybe z^* is exactly 16 (and the upper bound is **tight**). However, we do not know it here.
 - $\hat{z} = 15$ is close to $z^* = 16$, so \hat{x} is quite good.

Upper bounds of a maximization LP

• How to find an upper bound of z^* for this one?

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$

s.t. $x_1 + 2x_2 + 3x_3 \le 6$
 $2x_1 + x_2 + 2x_3 \le 4$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

▶ 16 is also an upper bound:

$$3x_1 + 4x_2 + 8x_3$$

$$\leq 4x_1 + 5x_2 + 8x_3 \quad (\text{because } x_1 \ge 0, \ x_2 \ge 0)$$

$$= 2(x_1 + 2x_2 + 3x_3) + (2x_1 + x_2 + 2x_3)$$

$$\leq 2 \times 6 + 4 = 16.$$

• It is quite likely that 16 is not a tight upper bound and there is a better one. How to improve our upper bound?

Better upper bounds?

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$

s.t. $x_1 + 2x_2 + 3x_3 \le 6$
 $2x_1 + x_2 + 2x_3 \le 4$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

- Changing coefficients multiplied on the two constraints modifies the proposed upper bound.
 - ▶ Different coefficients result in different linear combinations.
- Let's call the two coefficients y_1 and y_2 , respectively:

• When do we have $z^* \leq 6y_1 + 4y_2$?

Looking for the lowest upper bound

- ▶ So we look for two variables y_1 and y_2 such that:
 - $y_1 \ge 0$ and $y_2 \ge 0$.
 - ▶ $3 \le y_1 + 2y_2, 4 \le 2y_1 + y_2$, and $8 \le 3y_1 + 2y_2$.
 - Then $z^* \le 6y_1 + 4y_2$.
- ► To try our **best** to look for an upper bound, we minimize $6y_1 + 4y_2$. We are solving **another LP**!

- ▶ We call the original LP the **primal** LP and the new one its **dual** LP.
- ▶ This idea applies to **any** LP. Let's see more examples.

Nonpositive or free variables

▶ Suppose variables are not all nonnegative:

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$

s.t. $x_1 + 2x_2 + 3x_3 \le 6$
 $2x_1 + x_2 + 2x_3 \le 4$
 $x_1 \ge 0, x_2 \le 0, x_3$ urs.

▶ If we want

now we need

Nonpositive or free variables

▶ So the primal and dual LPs are

may	3~	_	Are	1	8ma				\min	$6y_1$	+	$4y_2$		
шах	$3x_1$	- -	412	-	013	_	0		s.t.	y_1	+	$2y_2$	\geq	3
s.t.	x_1	+	$2x_2$	+	$3x_3$	\leq	6	and		$2\tilde{u}_1$	+	มือ	<	4
	$2x_1$	+	x_2	+	$2x_3$	\leq	4			-91 201	i.	92 201-	_	Q.
	r_1	> 0	$r_2 <$	0 r	2 lirs					$3y_1$	Ŧ	zy_2	_	0
	w1 :	,	w2 _	ο, ω.	5 ano.					y_1	> 0.	$y_2 > 1$	0.	

Some observations:

- Primal max \Rightarrow Dual min.
- Primal objective \Rightarrow Dual RHS.
- ▶ Primal RHS \Rightarrow Dual objective.

► Moreover:

- ▶ Primal " ≥ 0 " variable \Rightarrow Dual " \geq " constraint.
- ▶ Primal " ≤ 0 " variable \Rightarrow Dual " \leq " constraint.
- ▶ Primal free variable \Rightarrow Dual "=" constraint.
- ▶ What if we have " \geq " or "=" primal constraints?

No-less-than and equality constraints

• Suppose constraints are not all " \leq ":

$$z^* = \max \quad 3x_1 + 4x_2 + 8x_3$$

s.t. $x_1 + 2x_2 + 3x_3 \ge 6$
 $2x_1 + x_2 + 2x_3 = 4$
 $x_1 \ge 0, x_2 \le 0, x_3$ urs.

▶ To obtain

$$y_1(x_1 + 2x_2 + 3x_3) + y_2(2x_1 + x_2 + 2x_3) \le 6y_1 + 4y_2,$$

we now need $y_1 \leq 0$. y_2 can be of any sign (i.e., free).

No-less-than and equality constraints

▶ So the primal and dual LPs are

▶ Some more observations:

- ▶ Primal "≤" constraint \Rightarrow Dual "≥ 0" variable.
- ▶ Primal "≥" constraint \Rightarrow Dual "≤ 0" variable.
- ▶ Primal "=" constraint \Rightarrow Dual free variable.

The general rule

▶ In general, if the primal LP is

its dual LP is

▶ Note that the constraint coefficient matrix is "transposed".

Matrix representation

In general, if the primal LP

$$\begin{array}{rcl} \max & c_1x_1 & + & c_2x_2 & + & c_3x_3 \\ \text{s.t.} & A_{11}x_1 & + & A_{12}x_2 & + & A_{13}x_3 & = & b_1 \\ & A_{21}x_1 & + & A_{22}x_2 & + & A_{23}x_3 & = & b_2 \\ & A_{31}x_1 & + & A_{32}x_2 & + & A_{33}x_3 & = & b_3 \\ & & x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \end{array}$$
is in the standard form, its dual LP is

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{array}$$
and

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0 \end{array}$$

$$\begin{array}{ll} \min & y^T b \\ \text{s.t.} & y^T A \geq c^T . \end{array}$$

The dual LP for a minimization primal LP

- ▶ For a minimization LP, its dual LP is to maximize the lower bound.
- Bules for the directions of variables and constraints are **reversed**:

~

▶ Note that

$$3x_1 + 4x_2 + 8x_3$$

$$\geq (y_1 + 2y_2)x_1 + (2y_1 + y_2)x_2 + (3y_1 + 2y_2)x_3$$

$$\geq (x_1 + 2x_2 + 3x_3)y_1 + (2x_1 + x_2 + 2x_3)y_2$$

$$\geq 6y_1 + 4y_2.$$

Primal-dual pairs	Duality theorems	Shadow prices
000000000000000000000000000000000000000	00000000	0000000000

The general rule, uniqueness, and symmetry

▶ The general rule for finding the dual LP:

Obj. function	max	$ \min $	Obj. function
Constraint	VI //	$ \begin{array}{l} \geq 0 \\ \leq 0 \\ \text{urs.} \end{array} $	Variable
Variable		∧	Constraint

▶ If the primal LP is a maximization problem, do it from left to right.

▶ If the primal LP is a minimization problem, do it from right to left.

Proposition 1 (Uniqueness and symmetry of duality)

For any primal LP, there is a unique dual, whose dual is the primal.

Examples of primal-dual pairs

► Example 1:

► Example 2:

Road map

- ▶ Primal-dual pairs.
- ► Duality theorems.
- Shadow prices.

Duality theorems

- Duality provides many interesting properties.
- ▶ We will illustrate these properties for standard form primal LPs:

$$\begin{array}{ll} \max & c^T x \\ \text{s.t.} & Ax = b \\ x \ge 0. \end{array} & \Leftrightarrow & \min & y^T b \\ \text{s.t.} & y^T A \ge c^T. \end{array}$$
(1)

▶ It can be shown that all the properties that we will introduce apply to other primal-dual pairs.

Primal-dual pairs	Duality theorems	Shadow prices
00000000000000	00●000000	00000000000000

Weak duality

$$\begin{array}{ll} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0. \end{array} \quad \Leftrightarrow \quad \begin{array}{l} \min & y^T b \\ \text{s.t.} & y^T A \ge c^T. \end{array}$$

▶ The dual LP provides an **upper bound** of the primal LP.

Proposition 2 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual feasible, then $c^T x \leq y^T b$.

Proof. As long as x and y are primal and dual feasible, we have

$$\begin{array}{rcl} c^T x & \leq & y^T A x & (x \geq 0 \text{ and } y^T A \geq c^T) \\ & \leq & y^T b & (A x = b). \end{array}$$

Therefore, weak duality holds.

Sufficiency of optimality

$$\begin{array}{ll} \max & c^T x \\ \text{s.t.} & Ax = b \\ & x \ge 0. \end{array} \quad \Leftrightarrow \quad \begin{array}{l} \min & y^T b \\ \text{s.t.} & y^T A \ge c^T. \end{array}$$

▶ We now have a **sufficient condition** for optimal solutions.

Proposition 3 (Sufficient condition for optimality)

If \bar{x} and \bar{y} are primal and dual feasible and $c^T \bar{x} = \bar{y}^T b$, then \bar{x} and \bar{y} are primal and dual optimal.

Proof. For all dual feasible y, we have $c^T \bar{x} \leq y^T b$ by weak duality. But we are given that $c^T \bar{x} = \bar{y}^T b$, so we have $\bar{y}^T b \leq y^T b$ for all dual feasible y. This just tells us that \bar{y} is dual optimal. For \bar{x} it is the same. \Box

• Given a primal feasible solution \bar{x} , if we can find a dual feasible solution so that there objective values are **identical**, \bar{x} is optimal.

The dual optimal solution

$$\begin{array}{ll} \max & c^T x \\ \text{s.t.} & Ax = b \\ x \ge 0. \end{array} \quad \Leftrightarrow \quad \begin{array}{l} \min & y^T b \\ \text{s.t.} & y^T A \ge c^T. \end{array}$$

▶ If we have solved the primal LP, the **dual optimal solution** is there.

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if \bar{x} is primal optimal with basis B, then $\bar{y}^T = c_B^T A_B^{-1}$ is dual optimal.

Proof. Because B is optimal, the reduced costs $c_B^T A_B^{-1} A_N - c_N^T \ge 0$. As $c_B^T = c_B^T A_B^{-1} A_B$, we have

$$\bar{y}^T A = c_B^T A_B^{-1} A = c_B^T A_B^{-1} \begin{bmatrix} A_B & A_N \end{bmatrix} \ge \begin{bmatrix} c_B^T & c_N^T \end{bmatrix} = c^T$$

and thus \bar{y} is dual feasible. As $\bar{y}^T b = c_B^T A_B^{-1} b = c_B^T x_B = c^T x$, \bar{x} and \bar{y} have the same objective value and are thus both optimal.

Primal-dual pairs	Duality theorems	Shadow prices
00000000000000	00000●000	00000000000000

Strong duality

$$\begin{array}{ll} \max & c^T x \\ \text{s.t.} & Ax = b \\ x \ge 0. \end{array} \quad \Leftrightarrow \quad \begin{array}{l} \min & y^T b \\ \text{s.t.} & y^T A \ge c^T. \end{array}$$

• The fact that $c_B^T A_B^{-1}$ is dual optimal implies strong duality:

Proposition 5 (Strong duality)

For the LPs defined in (1), \bar{x} and \bar{y} are primal and dual optimal if and only if \bar{x} and \bar{y} are primal and dual feasible and $c^T \bar{x} = \bar{y}^T b$.

Proof. To prove this if-and-only-if statement:

- (\Leftarrow): By Proposition 3.
- ► (⇒): As $c_B^T A_B^{-1}$ is an dual optimal solution, the dual optimal objective value is $c_B^T A_B^{-1} b$, which equals the primal optimal objective value $c^T \bar{x}$. As \bar{y} is dual optimal, $\bar{y}^T b = c_B^T A_B^{-1} b = c^T \bar{x}$.

²As the dual LP may or may not have a unique optimal solution, \bar{y} and $c_B^T A_B^{-1}$ may or may not be identical. In either case, the statement holds.

Implications of strong duality

- ▶ Strong duality certainly implies weak duality.
 - Weak duality says that the dual LP provides a bound.
 - Strong duality says that the bound is **tight**, i.e., cannot be improved.
- ▶ The primal and dual LPs are **equivalent**.
- Given the result of one LP, we may predict the result of its dual:

Primal	Dual				
1 Hillai	Infeasible	Unbounded	Finitely optimal		
Infeasible	\checkmark	\checkmark	×		
Unbounded	\checkmark	×	×		
Finitely optimal	×	×	\checkmark		

- $\sqrt{\text{means possible}}$, \times means impossible.
- ▶ Primal unbounded \Rightarrow no upper bound \Rightarrow dual infeasible.
- Primal finitely optimal \Rightarrow finite objective value \Rightarrow dual finitely optimal.
- If primal is infeasible, the dual may still be infeasible (by examples).

Complementary slackness

• Consider w, the **slack** variables of the dual LP:

min
$$y^T b$$

s.t. $y^T A - w^T = c^T$ (2)
 $w \ge 0.$

Proposition 6 (Complementary slackness)

For the primal defined in (1) and dual defined in (2), \bar{x} and (\bar{y}, \bar{w}) are primal and dual optimal if and only if $\bar{w}^T \bar{x} = 0$.

Proof. We have $c^T \bar{x} = (\bar{y}^T A - \bar{w}^T) \bar{x} = \bar{y}^T A \bar{x} - \bar{w}^T \bar{x} = \bar{y}^T b - \bar{w}^T \bar{x}$. Therefore, $\bar{w}^T \bar{x} = 0$ if and only if $c^T \bar{x} = \bar{y}^T b$, i.e., \bar{x} and (\bar{y}, \bar{w}) are primal and dual optimal according to strong duality.

- Note that $\bar{w}^T \bar{x} = 0$ if and only if $\bar{w}_i \bar{x}_i = 0$ for all i as $\bar{x} \ge 0$ and $\bar{w} \ge 0$.
- ▶ If a dual (respectively, primal) constraint is **nonbinding**, the corresponding primal (respectively, dual) variable is **zero**.

Why duality?

- ▶ Why duality? Given an LP:
 - We may solve it directly.
 - Or we may solve the dual LP and then get the primal optimal solution (by Proposition 4).
- ▶ Why bothering?
- Recall that the computation time of the simplex method is roughly proportional to m^3 .
 - m is the number of functional constraints of the original LP.
 - \blacktriangleright And n, the number of variables of the original LP, does not matter a lot.
- ▶ If *m* ≫ *n*, solving the dual LP can take a significantly **shorter time** than solving the primal!
- ▶ There are many other benefits for having duality. We will see some more in this course.
- ▶ Read Sections 6.1, 6.3, and 6.4 carefully.

Road map

- ▶ Primal-dual pairs.
- Duality theorems.
- ► Shadow prices.

A product mix problem

- ▶ Suppose we produce tables and chairs with wood and labors. In total we have six units of wood and six labor hours.
 - ▶ Each table is sold at \$3 and requires 2 units of wood and 1 labor hour.
 - ▶ Each chair is sold at \$1 and requires 1 unit of wood and 2 labor hours.

How may we formulate an LP to maximize our sales revenue?

▶ The formulation is

 x_1 = number of tables produced x_2 = number of chairs produced.

• The optimal solution is $x^* = (3, 0)$.

"What-if" questions

- ▶ In practice, people often ask "what-if" questions:
 - ▶ What if the unit price of chairs becomes \$2?
 - ▶ What if each table requires 3 unit of wood?
 - ▶ What if we have 10 units of woord?
- ▶ Why what-if questions?
 - ▶ Parameters may fluctuate.
 - Estimation of parameters may be inaccurate.
 - ▶ Looking for ways to improve the business.
- ▶ For realistic problems, what-if questions can be hard.
 - Even though it may be just a tiny modification of one parameter, the optimal solution may change a lot.
- ▶ The tool for answering what-if questions is **sensitivity analysis**.

Humboldt Redwood

- Pacific Lumber Company (now Humboldt Redwood) has over 200,000 acres of forests and five mills in Humboldt County.
- **Sustainability** is important in making operational decisions.
- ▶ They contracted with an OR team to develop a 120-year forest ecosystem management plan.
 - ► The LP optimizes the timberland operations for maximizing profitability while satisfying constraints including sustainability.
 - ▶ The model has around 8,500 functional constraints and 353,000 variables.
- ► The environment keeps **changing**!
 - ▶ E.g., climate, supply and demand, logging costs, and regulations.
 - Sensitivity analysis is applied.
- ▶ Read the application vignette in Section 6.7 and the article on CEIBA.

"What-if" questions

- ▶ In general, what-if questions can always be answered by formulating and solving a new optimization problem **from scratch**.
- But this may be too time consuming!
- ▶ By sensitivity analysis techniques:
 - ▶ The original optimal tableau provides useful information.
 - ▶ We typically start from the original optimal bfs and do just a few iterations to reach the new optimal bfs.
 - ▶ Duality provides a theoretical background.
- ► Here we want to introduce just one type of what-if question: What if I have additional units of a certain resource?
- Consider the following scenario:
 - ▶ One day, a salesperson enters your office and wants to offer you one additional unit of wood at \$1. Should you accept or reject?

Duality theorems 000000000

One more unit of wood

• To answer this question, you may formulate a new LP:

- The new objective value $z' = 3 \times 3.5 = 10.5$ is larger than the old objective value $z^* = 9$.
- ▶ It is good to accept the offer (at the unit price \$1).
 - ▶ We earn \$0.5 as our **net benefit**.

Duality theorems 000000000

One more labor hour

 Suppose instead of offering one addition unit of wood, the salesperson offers one additional labor hour at \$1.

- The new objective value is the same as the old objective value.
- ▶ It is not worthwhile to buy it: The objective value does not increase.
 - ▶ The **net loss** is \$1.

Shadow prices

- ► For each resource, there is a **maximum amount of price** we are willing to pay for one additional unit.
 - ▶ That depends on the net benefit of that one additional unit.
 - ▶ For wood, this price is \$1.5. For labor hours, this price is \$0.
- ▶ This motivates us to define **shadow prices** for each constraint:

Definition 1 (Shadow price)

For an LP that has an optimal solution, the shadow price of a constraint is the amount of objective value increased when the RHS of that constraint is increased by 1, assuming the current optimal basis remains optimal.

- ▶ So for our table-chair example, the shadow prices for constraints 1 and 2 are 1.5 and 0, respectively.
- ▶ For shadow prices, see Section 4.7.
- ▶ Note that we **assume** that the current optimal basis does not change.

Duality theorems 000000000 Shadow prices 00000000000000

Assuming the optimal basis does not change

▶ Consider another example:

2*

• If we want to find the shadow price of constraint 1, we may try to solve a new LP:

- ► Though z^{**} = 13.5 and z^{*} = 12, the shadow price is 15 - 12 = 3, not 1.5!
- ▶ Shadow prices measure the **rate** of improvement.

Signs of shadow prices

► As a shadow price measures how the objective value is **increased**, its sign is determined based on how the feasible region changes:

Proposition 7 (Signs of shadow prices)

For any LP, the sign of a shadow price follows the rule below:

Constraint				
\leq	\geq	=		
≥ 0	≤ 0	Free		
≤ 0	≥ 0	Free		
	C \leq ≥ 0 ≤ 0	$Constrat \leq \geq \\ \geq 0 \leq 0 \\ \leq 0 \geq 0$		

Nonbinding constraints' shadow prices

 \blacktriangleright If shifting a constraint does not affect the optimal solution, the shadow price must be <code>zero.3</code>

Proposition 8

Shadow prices are zero for constraints that are nonbinding at the optimal solution.

- ▶ Now we know finding shadow prices allows us to answer the questions regarding additional units of resources.
- ▶ But how to find **all** shadow prices?
 - Let m be the number of constraints.
 - Is there a better way than solving m LPs?
 - Duality helps!

³Not all binding constraints has nonzero shadow prices. Why?

Dual optimal solution provide shadow prices

Proposition 9

For any LP, shadow prices equal the values of dual variables in the dual optimal solution.

Proof. Let B be the old optimal basis and $z = c_B^T A_B^{-1} b$ be the old objective value. If b_1 becomes $b'_1 = b_1 + 1$, then z becomes

$$z' = c_B^T A_B^{-1} \left(b + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \right) = z + \left(c_B^T A_B^{-1} \right)_1.$$

So the shadow price of constraint 1 is $(c_B^T A_B^{-1})_1$. In general, the shadow price of constraint *i* is $(c_B^T A_B^{-1})_i$. As $c_B^T A_B^{-1}$ is the dual optimal solution, the proof is complete.

Linear Programming Duality

An example

▶ What are the shadow prices?

$$\begin{array}{rll} \min & 6x_1 & + & 4x_2 \\ \text{s.t.} & x_1 & + & x_2 & \geq & 2 \\ & & 3x_1 & + & x_2 & \geq & 1 \\ & & x_i \geq 0 \quad \forall i = 1, 2. \end{array}$$

▶ We solve the dual LP

The dual optimal solution is y* = (4,0).
▶ So shadow prices are 4 and 0, respectively.

