
Linear relaxation Branch and bound B&B for knapsack IP formulation

IM 2010: Operations Research, Spring 2014

Integer Programming

Ling-Chieh Kung

Department of Information Management
National Taiwan University

March 27, 2014

Integer Programming 1 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Scheduling workforce again

I We know that United Airline developed an LP to determine the
number of staffs in each of their service locations.

I The same problem is faced by Taco Bell.
I It has more than 6500 restaurants in the US.
I It asks how many staffs to have at each restaurant in each shift.

I Taco Bell developed an Integer Program (i.e., an LP with integer
variables) to solve its workforce scheduling problem.
I The number of staffs is typically small! Rounding is very inaccurate.

I $13 million are saved per year.

I Read the short story in Section 11.5 and the article on CEIBA.

Integer Programming 2 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Integer programming

I We have worked with LP for four weeks.

I In some cases, variables must only take integer values.
I Producing tables and chairs in a big factory: fractional variables.
I Selecting some books to sell (knapsack): integer variables.
I United Airline vs. Taco Bell.
I We will see other reasons to use integer variables.

I The subject of formulating and solving models with integer variables is
Integer Programming (IP).
I An IP is typically a linear IP (LIP).
I If the objective function or any functional constraint is nonlinear, it is a

nonlinear IP (NLIP).
I We will focus on linear IP in this course.

Integer Programming 3 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Integer programming

I First, we will introduce one general algorithm for solving IPs.
I It “decomposes” an IP to multiple LPs, solve all the LPs, and compares

those outcomes to reach a conclusion.
I Each LP is solved separately (with the simplex method or other ways).
I In general, solving a large-scale IP can takes a very long time.

I We then demonstrate how to use binary variables to enrich our
formulations and model more complicated situations.

I Read Sections 11.1–11.7 in the textbook.

Integer Programming 4 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Road map

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

I Integer programming formulation.

Integer Programming 5 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Solving an IP

I Suppose we are given an IP, how may we
solve it?

I The simplex method does not work!
I The feasible region is not “a region”.
I It is discrete.
I There is no way to “move along edges”.

I But all we know is how to solve LPs. How
about solving a linear relaxation first?

Definition 1 (Linear relaxation)

For a given IP, its linear relaxation is
the resulting LP after removing all the
integer constraints.

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11

xi ∈ Z+ ∀i = 1, 2.

Integer Programming 6 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Linear relaxation

I What is the linear relaxation of

max
s.t.

x1 + x2

x1 + 3x2 ≤ 10
2x1 − x2 ≥ 5

xi ∈ Z+ ∀i = 1, 2?

I Z is the set of all integers. Z+ is the set of all nonnegative integers.

I The linear relaxation is

max
s.t.

x1 + x2

x1 + 3x2 ≤ 10
2x1 − x2 ≥ 5

xi ≥ 0 ∀i = 1, 2.

Integer Programming 7 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Linear relaxation

I For the knapsack problem

max
s.t.

16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 10

xi ∈ {0, 1} ∀i = 1, ..., 4,

the linear relaxation is

max
s.t.

16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 10

xi ∈ [0, 1] ∀i = 1, ..., 4,

I xi ∈ [0, 1] is equivalent to xi ≥ 0 and xi ≤ 1.

Integer Programming 8 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Linear relaxation provides a bound

I For a minimization IP, its linear relaxation provides a lower bound.

Proposition 1

Let z∗ and z′ be the objective values associated to optimal solutions of
a minimization IP and its linear relaxation, respectively, then z′ ≤ z∗.

Proof. They have the same objective function. However, the linear
relaxation’s feasible region is (weakly) larger than that of the IP.

I For a maximization IP, linear relaxation provides an upper bound.

Integer Programming 9 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Linear relaxation may solve the IP

I If we are lucky, the linear relaxation may be infeasible or unbounded.
I The IP is then infeasible or unbounded.

I If we are lucky, an optimal solution to the linear relaxation may be
feasible to the original IP. When this happens, the IP is solved:

Proposition 2

Let x′ be an optimal solutions to the linear relaxation of an IP. If x′

is feasible to the IP, it is optimal to the IP.

Proof. Suppose x′ is not optimal to the IP, there must be another
feasible solution x′′ that is better. However, as x′′ is feasible to the IP,
it is also feasible to the linear relaxation, which implies that x′ cannot
be optimal to the linear relaxation.

I What if we are unlucky?

Integer Programming 10 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Rounding a fractional solution

I Suppose we solve a linear relaxation with an LR-optimal solution x′.
I “LR-optimal” means x′ is optimal to the linear relaxation.

I x′, however, has at least one variable violating the integer constraint in
the original IP.

I We may choose to round the variable.
I Round up or down?
I Is the resulting solution always feasible?
I Will the resulting solution be close to an IP-optimal solution x∗?

Integer Programming 11 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Rounding a fractional solution

I Consider the following IP

max
s.t.

8x1 + 5x2

x1 + x2 ≤ 6
9x1 + 5x2 ≤ 45

xi ∈ Z+ ∀i = 1, 2.

I x∗ = (5, 0) is IP-optimal.

I But x1 = (15
4 , 9

4) is LR-optimal!
I Rounding up any variable results

in infeasible solutions.
I None of the four grid points

around x1 is optimal.

I We need a way that guarantees to
find an optimal solution.

Integer Programming 12 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Road map

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

I Integer programming formulation.

Integer Programming 13 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Rounding a fractional solution

I x1 = (15
4 , 9

4) is LR-optimal.
I Rounding up or down x1 (i.e.,

adding x1 = 4 or x1 = 3 into the
program) both fail to find the
optimal solution.

I Because we eliminate too many
feasible points!

I Instead of adding equalities, we
should add inequalities.

I What will happen if we add x1 ≥ 4
or x1 ≤ 3 into the program?

I We will branch this problem into
two problems, one with an
additional constraint.

Integer Programming 14 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Rounding a fractional solution

If we add x1 ≤ 3: If we add x1 ≥ 4:

I The optimal solution to the IP must be contained in one of the above
two feasible regions. Why?

Integer Programming 15 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Rounding a fractional solution

I So when we solve the linear relaxation and find any variable violating
an integer constraint, we will branch this problem into two problems,
one with an additional constraint.

I The two new programs are still linear programs.

I Once we solved them:
I If their LR-optimal solutions are both IP-feasible, compare them and

choose the better one.
I If any of them results in a variable violating the integer constraint,

branch on that variable recursively.
I Eventually compare all the IP-feasible solutions we obtain.

Integer Programming 16 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Example

I Let’s illustrate the
branch-and-bound algorithm with
the following example:

(P0)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11

xi ∈ Z+ ∀i = 1, 2.

Integer Programming 17 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 1

I First we solve the linear relaxation:

(P1)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11

xi ≥ 0 ∀i = 1, 2.

I The optimal solution is
x1 = (11

4 , 0).

I So we need to branch on x1.

Integer Programming 18 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branching tree

I The branch and bound algorithm produces a branching tree.
I Each node represents a subproblem (which is an LP).
I Each time we branch on a variable, we create two child nodes.

Integer Programming 19 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 2

I When we add x1 ≤ 2:

(P2)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

xi ≥ 0 ∀i = 1, 2.

I An (P2)-optimal solution is
x2 = (2, 3

2).
I So later we need to branch on x2.

I Before that, let’s solve (P3).

Integer Programming 20 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 3

I When we add x1 ≥ 3:

(P3)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≥ 3

xi ≥ 0 ∀i = 1, 2.

I The problem is infeasible!

I This node is “dead” and does not
produce any candidate solution.

Integer Programming 21 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branching tree

I The current progress can be summarized in the branching tree.

I Note that z2 = 7.5 < 8.25 = z1.

I In general, when we branch to the next level, the objective value
associated with a subproblem-optimal solution will always be weakly
lower (for a maximization problem). Why?

Integer Programming 22 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branching tree

I As x2 = 3
2 in x2, we will branch subproblem 2 on x2.

Integer Programming 23 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 4

I When we add x2 ≤ 1:

(P4)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≤ 1

xi ≥ 0 ∀i = 1, 2.

I Note that we add x2 ≤ 1 into
subproblem 2, so x1 ≤ 2 is still
there.

Integer Programming 24 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 5

I When we add x2 ≥ 2:

(P5)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≥ 2

xi ≥ 0 ∀i = 1, 2.

Integer Programming 25 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branching tree
I x4 satisfies all the integer constraints.

I It is IP-feasible and thus a candidate solution to the original IP.

I But branching subproblem 5 may result in a better solution.

Integer Programming 26 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branching tree
I Let’s branch subproblem 5 on x1.

Integer Programming 27 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 6

I When we add x1 ≤ 1:

(P6)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≥ 2
x1 ≤ 1

xi ≥ 0 ∀i = 1, 2.

I x6 = (1, 7
2). We may need to

branch on x2 again. However, let’s
solve subproblem 7 first.

Integer Programming 28 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 7

I When we add x1 ≥ 2:

(P7)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≥ 2
x1 ≥ 2

xi ≥ 0 ∀i = 1, 2.

I The problem is infeasible.

I The node is “dead”.

Integer Programming 29 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branching tree

I The only “alive”
node is subproblem
6, with x2

fractional.

I Before we branch
subproblem 6,
consider the
following:

Integer Programming 30 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Bounding

I z6 = 13
2

. If we branch (P6),
all the candidate solutions
(if any) under it will be
(weakly) worse than 13

2
.

I However, 13
2

< 7 = z4, and
x4 is already a candidate!

I So there is no need to
branch (P6). This is the
“bounding” situation in
the branch-and-bound
algorithm.

I This allows us to solve
fewer subproblems.

Integer Programming 31 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Summary

I In running the branch-and-bound algorithm, we maintain a tree.

I If a subproblem-optimal solution is IP-feasible, set it to the candidate
solution if it is currently the best among all IP-feasible solutions. Stop
branching this node.

I If a subproblem is infeasible, stop branching this node.

I If a subproblem-optimal solution is not IP-feasible:
I If it is better than the current candidate solution, branch.
I Otherwise, stop branching.

Integer Programming 32 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Another example

I Now let’s go back to our motivating example:

(Q0)

max
s.t.

8x1 + 5x2

x1 + x2 ≤ 6
9x1 + 5x2 ≤ 45

xi ∈ Z+ ∀i = 1, 2.

I Let’s solve it with the branch-and-bound algorithm.

Integer Programming 33 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblem 1

I x1 = (15
4
, 9
4
).

I We may branch on either variable. Let’s
branch on x1.

Integer Programming 34 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblems 2 and 3

I Subproblem 2 generates a candidate solution.

I x3 = (4, 9
5
). As z3 = 41 > z2 = 39, we should

branch subproblem 3.

Integer Programming 35 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblems 4 and 5

I x4 = (40
9
, 1). As z4 = 40.25 > z2 = 39, we

should branch subproblem 4.

I Subproblem 5 is infeasible.

Integer Programming 36 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Subproblems 6 and 7

I x6 = (4, 1) but z6 = 37 < 39 = z2.

I x7 = (5, 0) and z7 = 40 > 39 = z2. As it is
also the last node, x7 is an optimal solution.

Integer Programming 37 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Remarks

I To select a node to branch:
I Among all alive nodes, there are many different ways of selecting a node

to branch.
I One common approach is to branch the node with the highest objective

value (for a maximization problem). Why?
I Another popular approach is “once a node is branched, all its

descendants are branched before any nondescendant. Why?

I Choosing a variable to branch on is also a challenging task.

I The branch-and-bound algorithm guarantees to find an optimal
solution, if one exists.

I However, it is an exponential-time algorithm.
I Roughly speaking, with n integer variables, the number of subproblems

solved is approximately proportional to 2n.

Integer Programming 38 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Road map

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

I Integer programming formulation.

Integer Programming 39 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branch and bound for knapsack

I The branch-and-bound algorithm is particularly useful for solving the
knapsack problem.
I Because the linear relaxation of a knapsack problem can be solved very

easily.

I Consider the example

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6

xi ∈ {0, 1} ∀i = 1, ..., 4.

How to solve its linear relaxation?

Integer Programming 40 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Branch and bound for knapsack

I The linear relaxation

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6

xi ∈ [0, 1] ∀i = 1, ..., 4.

can be solved greedily by sorting the variables according to the
benefit-cost ratio.
I The four ratios are 5

3
≈ 1.67, 8

5
= 1.6, 3

2
= 1.5, and 7

4
= 1.75.

I x4 has the highest priority then x1, then x2, then x3.
I First set x4 = 1. Then set x1 = 2

3
(because setting x1 = 1 violates the

constraint). Then x2 = x3 = 0.

I Let’s now use the branch-and-bound algorithm to solve this knapsack
problem. For each node, we can use the above rule (instead of the
simplex method) to find an optimal solution.

Integer Programming 41 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We branch subproblem 1 on x1:
I Note that x1 ≤ 0 is equivalent to x1 = 0 when x1 is binary.

Integer Programming 42 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We branch subproblem 3 first (why?)

Integer Programming 43 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We branch subproblem 2 before we branch subproblem 4 (why?).

I And, luckily, we do not need to branch subproblem 4.

Integer Programming 44 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We do not need to branch subproblem 7.

I An IP-optimal solution is found.

Integer Programming 45 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Road map

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

I Integer programming formulation.

Integer Programming 46 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

The knapsack problem

I We start our illustration with the classic knapsack problem.

I There are four items to select:

Item 1 2 3 4

Value ($) 16 22 12 8
Weight(kg) 5 7 4 3

I The knapsack capacity is 10 kg.

I We maximize the total value without exceeding the knapsack capacity.

I The complete formulation:

max
s.t.

16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 10

xi ∈ {0, 1} ∀i = 1, ..., 4.

Integer Programming 47 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Requirements on selecting variables

I Integer programming allows us to implement some selection rules.

I At least/most some items:
I Suppose we must select at least one item among items 2, 3, and 4:

x2 + x3 + x4 ≥ 1.

I Suppose we must select at most two items among items 1, 3, and 4:

x1 + x3 + x4 ≤ 2

Integer Programming 48 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Requirements on selecting variables

I Or:
I Select item 2 or item 3:

x2 + x3 ≥ 1.

I Select item 2; otherwise, items 3 and 4 togehter:

2x2 + x3 + x4 ≥ 2.

I If-else:
I If item 2 is selected, select item 3:

x2 ≤ x3.

I If item 1 is selected, do not select items 3 and 4:

2(1− x1) ≥ x3 + x4.

Integer Programming 49 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Fixed-charge constraints

I Consider the following example:

I n factories, 1 market, 1 product.
I Capacity of factory i: Ki.
I Unit production cost at factory i: Ci.
I Demand: D.
I We want to satisfy the demand with the

minimum cost.

I Setup cost at factory i: Si.
I One needs to pay the setup cost as long

as any positive amount of products is
produced.

Integer Programming 50 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Basic formulation
I Let the decision variables be

xi = production quantity at factory i, i = 1, ..., n,

yi =

{
1 if some products are produced at factory i, i = 1, ..., n.
0 o/w.

I Objective function:

min

n∑
i=1

Cixi +

n∑
i=1

Siyi.

I Capacity limitation:

xi ≤ Ki ∀i = 1, ..., n.

I Demand fulfillment:
n∑

i=1

xi ≥ D.

Integer Programming 51 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Setup costs

I How may we know whether we need to pay the setup cost at factory i?
I If xi > 0, yi must be 1; if xi = 0, yi should be 0.

I So the relationship between xi and yi should be:

xi ≤ Kiyi ∀i = 1, ..., n.

I If xi > 0, yi cannot be 0.
I If xi = 0, yi can be 0 or 1. Why yi will always be 0 when xi = 0?

I Finally, binary and nonnegative constraints:

xi ≥ 0, yi ∈ {0, 1} ∀i = 1, ..., n.

Integer Programming 52 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Fixed-charge constraints

I The constraint xi ≤ Kiyi is known as a fixed-charge constraint.

I In general, a fixed-charge constraint is

x ≤My.

I Both x and y are decision variables.
I y ∈ {0, 1} is determined by x.
I M must be set to be an upper bound of x.
I When x is binary, x ≤ y is sufficient.

I We need to make M an upper bound of x.
I For example, Ki is an upper bound of xi in the factory example. Why?
I What if there is no capacity limitation?

Integer Programming 53 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

At least/most some constraints
I Using a similar technique, we may flexibly select constraints.

I Suppose satisfying one of the two constraints

g1(x) ≤ b1 and g2(x) ≤ b2

is enough. How to formulate this situation?

I Let’s define a binary variable

z =

{
0 if g1(x) ≤ b1 is satisfied,
1 if g2(x) ≤ b2 is satisfied.

I With Mi being an upper bound of each LHS, the following two
constraints implement what we need:

g1(x)− b1 ≤M1z

g2(x)− b2 ≤M2(1− z).

Integer Programming 54 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

At least/most some constraints

I Suppose at least two of the three constraints

gi(x) ≤ bi, i = 1, 2, 3,

must be satisfied. How to play the same trick?

I Let

zi =

{
1 if gi(x) ≤ bi is satisfied,
0 if gi(x) ≤ bi may be unsatisfied.

I With Mi being an upper bound of each LHS, the following constraints
are what we need:

gi(x)− bi ≤Mi(1− zi) ∀i = 1, ..., 3.

z1 + z2 + z3 ≥ 2.

Integer Programming 55 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

If-else constraints

I In some cases, if g1(x) > b1 is satisfied, then g2(x) ≤ b2 must also be
satisfied.

I How to model this situation?
I First, note that “if A then B” ⇔ “(not A) or B”.
I So what we really want to do is g1(x) ≤ b1 or g2(x) ≤ b2.
I So simply select at least one of g1(x) ≤ b1 and g2(x) ≤ b2!

Integer Programming 56 / 57 Ling-Chieh Kung (NTU IM)

Linear relaxation Branch and bound B&B for knapsack IP formulation

Route selection

I Waste Management Inc. operates an recycling network with 293
landfill sites, 16 waste-to-energy plants, 72 gas-to-energy facilities, 146
recycling plants, 346 transfer stations, and 435 collection depots.
I 20000 routes must be go through by its vehicles in each day.

I How to determine a route?
I Construct a network with nodes and edges.
I Give each edge a binary variable: 1 if included and 0 otherwise.
I Constraints are required to make sure that selected edges are really

forming a route.

I A huge IP is constructed to save the company $498 million in
operational expenses over a 5-year period.

I Read the short story in Section 11.7 and the article on CEIBA.

Integer Programming 57 / 57 Ling-Chieh Kung (NTU IM)

	Linear relaxation
	Branch and bound
	B& B for knapsack
	IP formulation

