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Introduction

I So far we spent most of our time on Linear Programming.
I (Linear) Integer Programming complements Linear Programming.
I Network Flow Models are special cases of Linear Programming.

I In these two lectures we introduce Nonlinear Programming (NLP).
I Some functions are no more linear.
I A generalization of Linear Programming.
I Single-variate NLP in this week and multi-variate NLP in the next week.
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Road map

I Motivating examples.

I Convex analysis.

I Solving single-variate NLPs.
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Example: pricing a single good

I A retailer buys one product at a unit cost c.

I It chooses a unit retail price p.

I The demand is a function of p: D(p) = a− bp.
I How to formulate the problem of finding the

profit-maximizing price?
I Parameters: a > 0, b > 0, c > 0.
I Decision variable: p.
I Constraint: p ≥ 0.
I Formulation:

max
p

(p− c)(a− bp)

s.t. p ≥ 0

or
max
p≥0

(p− c)(a− bp).
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Example: folding a piece of paper

I We are given a piece of square paper whose
edge length is a.

I We want to cut down four small squares, each
with edge length d, at the four corners.

I We then fold this paper to create a container.

I How to choose d to maximize the volume of
the container?

max
d∈[0, a2 ]

(a− 2d)2d.

Nonlinear Programming (Part 1) 5 / 32 Ling-Chieh Kung (NTU IM)



Examples Convex analysis Single-variate NLPs

Example: locating a hospital

I In a country, there are n cities, each lies
at location (xi, yi).

I We want to locate a hospital at location
(x, y) to minimize the average Euclidean
distance from the cities to the hospital.

min
x,y

n∑
i=1

√
(x− xi)2 + (y − yi)2.

I The problem can be formulated as an LP
if we are working on Manhattan distances.
For Euclidean distances, the formulation
must be nonlinear.

Nonlinear Programming (Part 1) 6 / 32 Ling-Chieh Kung (NTU IM)



Examples Convex analysis Single-variate NLPs

Nonlinear Programming

I In all the three examples, the programs are by nature nonlinear.
I Because the trade off can only be modeled in a nonlinear way.

I In general, a nonlinear program (NLP) can be formulated as

min
x∈Rn

f(x)

s.t. gi(x) ≤ bi ∀i = 1, ...,m.

I x ∈ Rn: there are n decision variables.
I There are m constraints.
I This is an LP if f and gis are all linear in x.
I This is an NLP f and gis are allowed to be nonlinear in x.

I The study of formulating and optimizing NLPs is Nonlinear
Programming (also abbreviated as NLP).
I Formulation is easy but optimization is hard.
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Difficulties of NLP
I Compared with LP, NLP is much more difficult.

Observation 1

In an NLP, a local minimum is not always a global minimum.

I Over the feasible region F , x1 is a local minimum but not a global
minimum. How about other points?

I A greedy search may be trapped at a local minimum.
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Difficulties of NLP

Observation 2

In an NLP which has an optimal
solution, there may exist no extreme
point optimal solution.

I For example:

min
x1≥0,x2≥0

x21 + x22

s.t. x1 + x2 ≥ 4.

I The optimal solution x∗ = (2, 2) is not an
extreme point.

I The two extreme points are not optimal.
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Difficulties of NLP

I No one has invented an efficient algorithm for solving general NLPs
(i.e., finding a global optimum).

I For an NLP:
I We want to have a condition that makes a local minimum always a

global minimum.
I We want to have a condition that guarantees an extreme point optimal

solution (when there is an optimal solution).

I To answer these questions, we need convex analysis.
I Let’s define convex sets and convex and concave functions.
I Then we define convex programs and show that they have the first

desired property.
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Road map

I Motivating examples.

I Convex analysis.

I Solving single-variate NLPs.
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Convex sets

I Let’s start by defining convex sets and convex functions:

Definition 1 (Convex sets)

A set F ⊆ Rn is convex if

λx1 + (1− λ)x2 ∈ F

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Convex functions

Definition 2 (Convex functions)

For a convex domain F ⊆ Rn, a function f : Rn → R is convex over
F if

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2)

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Concave functions and some examples

Definition 3 (Concave functions)

For a convex domain F ∈ Rn, a function f : Rn → R is concave over
F if −f is convex.

I Convex sets?
I X1 = [10, 20].

I X2 = (10, 20).

I X3 = N.

I X4 = R.

I X5 = {(x, y) ∈ R2|x2 + y2 ≤ 4}.
I X6 = {(x, y) ∈ R2|x2 + y2 ≥ 4}.

I Convex functions?
I f1(x) = x+ 2, x ∈ R.

I f2(x) = x2 + 2, x ∈ R.

I f3(x) = sinx, x ∈ [0, 2π].

I f4(x) = sinx, x ∈ [π, 2π].

I f5(x) = log x, x ∈ (0,∞).

I f6(x, y) = x2 + y2, (x, y) ∈ R2.
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Local v.s. global optima

Proposition 1 (Global optimality of convex functions)

For a convex (concave) function f over a convex domain F , a local
minimum (maximum) is a global minimum (maximum).

f(x) = x3 + x2 − x. f(x, y) = x2 + y2.
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Local v.s. global optima

Proof. Suppose a local minimum x′ is not a global minimum and
there exists x′′ such that f(x′′) < f(x′). Consider a small enough
λ > 0 such that x̄ = λx′′ + (1− λ)x′ satisfies f(x̄) > f(x′). Such x̄
exists because x is a local minimum. Now, note that

f(x̄) = f(λx′′ + (1− λ)x′)

> f(x′)

= λf(x′) + (1− λ)f(x′)

> λf(x′′) + (1− λ)f(x′),

which violates the fact that f(·) is convex. Therefore, by
contradiction, the local minimum x must be a global minimum.
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Convexity of the feasible region is required

I Consider the following example

min
x∈R2

(x1 + 2)2 + (x2 + 1)2

s.t. x21 + x22 ≤ 9

x1 ≥ 0 or x2 ≥ 0.

Note that the feasible region is not
convex.

I The local minimum (0,−1) is not a
global minimum. The unique
global minimum is (−2, 0).
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Extreme points and optimal solutions

I Now we know if we minimize a convex function over a convex feasible
region, a local minimum is a global minimum.

I What may happen if we minimize a concave function?

I One “goes down” on a concave function if she moves “towards its
boundary”.

I We thus have the following proposition:

Proposition 2

For any concave function that has a global minimum over a convex
feasible region, there exists a global minimum that is an extreme point.

Proof. Beyond the scope of this course.
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Special case: LP

I Now we know when we minimize f(·) over a convex feasible region F :
I If f(·) is convex, search for a local minimum.
I If f(·) is concave, search among the extreme points of F .

I For any LP, we have both!

Proposition 3

The feasible region of an LP is convex.

Proof. First, note that the feasible region of an LP is the intersection
of several half spaces (each one is determined by an inequality
constraint) and hyperplanes (each one is determined by an equality
constraint). It is trivial to show that half spaces and hyperplanes are
always convex. It then remains to show that the intersection of convex
sets are convex, which is left as an exercise.
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Special case: LP

Proposition 4

A linear function f : Rn → R is both convex and concave.

Proof. To show that a function f is convex and concave, we need to
show that f(λx1 + (1− λ)x2) = λf(x1) + (1− λ)f(x2), which is
exactly the separability of linear functions: Let f(x) = cTx+ b be a
linear function, c ∈ Rn, b ∈ R, then

f
(
λx1 + (1− λ)x2

)
= cT

(
λx1 + (1− λ)x2

)
+ b

= λ(cTx1 + b) + (1− λ)(cTx2 + b) = λf(x1) + (1− λ)f(x2).

Therefore, a linear function is both convex and concave.

I To solve an LP, use a greedy search focusing on extreme points.

I This is exactly the simplex method.
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Convex Programming
I Consider a general NLP

min
x∈Rn

f(x)

s.t. gi(x) ≤ bi ∀i = 1, ...,m.

I If the feasible region F = {x ∈ Rn|gi(x) ≤ bi∀i = 1, ...,m} is convex
and f is convex over F , a local minimum is a global minimum.

I In this case, the NLP is called a convex program (CP).

Definition 4 (Convex programs)

An NLP is a CP if its feasible region is convex and its objective
function is convex over the feasible region.

I Efficient algorithms exist for solving CPs.
I The subject of formulating and solving CPs is Convex Programming.
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A sufficient condition for CP
I When is an NLP a CP?

Proposition 5

For an NLP
min
x∈Rn

{
f(x)

∣∣∣gi(x) ≤ bi∀i = 1, ...,m
}
,

if f and gis are all convex functions, the NLP is a CP.

Proof. We only need to prove that the feasible region is convex, which
is implied if Fi = {x ∈ Rn|gi(x) ≤ bi} is convex for all i. For two points
x1, x2 ∈ Fi and an arbitrary λ ∈ [0, 1], we have

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2)

≤ λbi + (1− λ)bi = bi,

which implies that Fi is convex. Repeating this argument for all i
completes the proof.
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Convex programming

I Now we have a larger relationship map:

I In this course, we will only discuss how to analytically solve NLPs.
I Analytical solutions are the foundations for managerial insights.
I We will not discuss algorithms for solving NLPs.

I All you need to know are:
I People can efficiently solve CPs.
I People cannot efficiently solve general NLPs.
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Road map

I Motivating examples.

I Convex analysis.

I Solving single-variate NLPs.
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Solving single-variate NLPs

I Here we discuss how to analytically solve single-variate NLPs.
I “Analytically solving a problem” means to express the solution as a

function of problem parameters symbolically.

I Even though solving problems with only one variable is restrictive, we
will see some useful examples in the remaining semester.

I We will focus on twice differentiable functions and try to utilize
convexity (if possible).
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Convexity of twice differentiable functions

I For a general function, we may need to use the definition of convex
functions to show its convexity.

I For single-variate twice differentiable functions (i.e., the second-order
derivative exists), there are useful properties:

Proposition 6

For a twice differentiable function f : R→ R over an interval (a, b):
I f is convex over (a, b) if and only if f ′′(x) ≥ 0 for all x ∈ (a, b).
I x̄ is a local minimum over (a, b) only if f ′(x̄) = 0.
I If f is convex over (a, b), x∗ is a global minimum over (a, b) if and only if
f ′(x∗) = 0.

Proof. For the first two, see your Calculus textbook. The last one is a
combination of the second one and the convexity of f .

I Note that the two boundary points may need special considerations.
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Convexity of twice differentiable functions

I The condition f ′(x) = 0 is called the first order condition (FOC).
I For all functions, FOC is necessary for a local minimum.
I For convex functions, FOC is also sufficient for a global minimum.

I To solve an NLP, convexity is the key.
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Example 1: a retailer’s pricing problem

I Now let’s apply these properties to solve Example 1

max
p≥0

π(p) = (p− c)(a− bp).

I The feasible region [0,∞) is convex.
I Let’s first ignore this constraint.
I The profit function is concave in p:

π′(p) = a− bp− b(p− c) and π′′(p) = −2b < 0.

I An unconstrained optimal solution p∗ satisfies

π′(p∗) = 0⇒ a− 2bp∗ + bc = 0⇒ p∗ =
a+ bc

2b
.

I As p∗ = a+bc
2b

> 0 is feasible, it is optimal.

I p∗ = a+bc
2b is an analytical solution.
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Example 1: economic interpretations

I For the retailer’s pricing problem

π∗ = max
p≥0

π(p) = (p− c)(a− bp),

the optimal retail price is p∗ = a+bc
2b . π∗ = π(p∗) = (a−bc)2

4b .

I Does p∗ make sense?
I p∗ goes up when a goes up.
I p∗ goes down when b goes up.
I p∗ goes up when c goes up.

I Does π∗ make sense?
I π∗ goes up when a goes up.
I π∗ goes down when c goes up.
I What happens when b goes up?

I Any condition on a, b, and c for the solution to be reasonable?
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Example 2: folding paper

I Now condition Example 2:

max
d∈[0, a2 ]

V (d) = (a− 2d)2d.

I The feasible region [0, d
2
] is convex.

I The volume function V (d) = 4d3 − 4ad2 + a2d is not concave!
I However, as long as it is concave over the feasible region, FOC will still

be sufficient (if we apply it to only feasible points). Is it?

V ′(d) = 12d2 − 8ad+ a2 and V ′′(d) = 24d− 8a.

In the feasible region [0, a
2
], V is also not concave.

I What should we do?
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Example 2: graphical illustration

I Let’s depict V (d) = 4d3 − 4ad2 + a2d:

I The reflection point (at which V ′′(d) = 24d− 8a = 0) is a
3
.

I When a = 2, this is 2
3
. V (d) is not concave over [ 2

3
,∞).
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Example 2: solving the problem

I Recall that FOC is always necessary!

I We may find all the points that satisfy FOC and compare all those
that are feasible.

V ′(d) = 12d2 − 8ad+ a2 = 0 ⇒ d =
a

6
or

a

2
.

I As V
(
a
6

)
> V

(
a
2

)
= 0, a

6
is optimal “over (0, d

2
)”.

I We may verify that a
6

and a
2

are local maximum and local minimum:

V ′′
(
a

6

)
= 24

(
a

6

)
− 8a = −4a < 0 and V ′′

(
a

2

)
= 4a > 0.

I As there are constraints, we also need to check the boundaries!
I As both boundary points 0 and a

2
result in a zero objective value, a

6
is

indeed optimal.

I Do d∗ = a
6 and V (d∗) = 2a3

27 make sense?
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