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Convex analysis

v

We have learned how to solve single-variate NLPs.

» An optimal solution either satisfies the FOC or is a boundary point.
» If the NLP is a CP, a feasible point satisfying the FOC is optimal.

The above facts actually apply to multi-variate NLPs.

v

v

We need to be able to determine whether a multi-variate function is
convex, concave, or neither.

v

We will still focus on twice differentiable functions.
» Let’s extend the notion of derivatives first.
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Partial derivatives
of (x)

» For a function f:R™ — R, its ith partial derivative is

6.’Ei ’
» E.g., the partial derivatives for
f@1, 22, 23) = 27 + 2223 + 2
are 5 5 8
f(z) =21, f(z) = x3 and M =x2 + Swg.
oz Ox2 0x3

» It also has second-order partial derivatives:
» For the same f, we have
i) _, PI@) _ )

= = 6x3
2 ) 2 ) 2 ’
Ox? 0x3 O0x3

Pf@) _ @) _, Of@) _0*@) _ 9*@) _ 0*()

Ox172 Oz " 123 Ox311 "’ Oxaxs Ox3T2

=1.
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Symmetry of second-order derivatives

» For a second-order derivatives, we have the following fact:

Proposition 1

For a twice differentiable function f :R™ — R, if its second-order
derivatives are all continuous, then

0*f(x) _ 0°f()

0x;x; 0x;;

foralli=1,...n,j=1,...n.

» For all functions we will see in this course, the above property holds.
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Multi-variate convex functions

» For f:R — R, f is convex if and only if f(xz) > 0 for all z.
. RN CP : : . 82f!x!
» For f:R"™ = R, is it true that f is convex if and only if =55~ > 0 for
all z;,i=1,...,n7 '

» Consider f(z1,72) = 23 + 4x129 + 5 + 21 + T2. Is it convex at (0,0)?

» We have
2
95(0,0) _ (221 + 4z2 + 1) =1 and 57,0 f(02’ 0 _ 2> 0.
Om (21,22)=(0,0) Oz
» We also have
2
8f(O’O):(23162—i—43101+1) =1 and %02’0)=2>0
Oms (21,22)=(0,0) 9zq

» Is f convex at (0,0)?
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Multi-variate convex functions

» This is necessary but
insufficient!

2
> a%{f(o,o) > 0 and

3%25 £(0,0) > 0 only imply
that f is convex along the
two axes!
» Along (1,-1), e.g., f is
not convex.

» We need to test whether f

is convex in all directions.

f(xy,20) = 2% + 42109 + 23 + 21 + 20,

|
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Gradients and Hessians

» For a function f: R™ — R, collecting its first- and second-order partial
derivatives generates its gradient and Hessian:

Definition 1 (Gradients and Hessians)

For a multi-variate twice differentiable function f: R™ — R, its
gradient and Hessian are

Pf@) 9 f(x)
agaggf) 8:1751 Ox10x2
2
Vi@ =| | ed V@)= | 2
of (=) .
iz 24(e)

» In this course, all Hessians are symmetric.

: :
Nonlinear Programming (Part 2) 8 /38 Ling-Chich Kung (NTU IM)




Multi-variate convex analysis Solving constrained NLPs Applications
0000000e000000 000000000000 0000 0000000

: :

: :

» For f(z1,72,23) = 2% + zow3 + 73, the gradient is

gy [ o
vi@) = 85? = x3
agg) xg + 322
» The Hessian is
P Gk e 2.0 0
o= | S e e <o
g g 2 | o1 e

» What are Vf(3,2,1) and V2£(3,2,1)?
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Convexity of twice differentiable functions

> Recall the following theorem for single-variate functions:
Proposition 2

For a single-variate twice differentiable function f(x):

> f is convez in [a,b] if f'(x) >0 for all z € [a,b].

» T is an interior local min only if f'(Z) = 0.

> If f is convex, x* is a global min if and only if f'(z*) = 0.

» We have an analogous theorem for multi-variate functions:

Proposition 3

For a multi-variate twice differentiable function f(x):

> f is convex in F if V2 f(x) is positive semi-definite for all x € F.
> T is an interior local min only if V f(x) = 0.

> If [ is convex, =¥ is a global min if and only if V f(z*) = 0.

» What is positive semi-definiteness (PSD)?
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Positive semi-definite matrices

» Positive semi-definite Hessians in R™ are generalizations of
nonnegative second-order derivatives in R.

Definition 2 (Positive semi-definite matrices)

A symmetric matriz A is positive semi-definite if xT Az > 0 for all
z € R”.
2 1

» Example 1: For A = [ 1 9

] , we have

2T Ax = 203 + 22w + 223 = (21 +22)? + 27 + 23 >0 Vo € R%

» Example 2: For A = ; ? , we have 27 Ax = 22 + 429 + 23,
which is negative when x1 = 1 and zo = —1.
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Positive semi-definite matrices

» Given a function f, when is its Hessian v2f PSD?

Proposition 4

For a symmetric matriz A, the following statements are equivalent:

> A is positive semi-definite.
» A’s eigenvalues are all nonnegative.
A’s leading principal minors are all nonnegative.

\{

v

A’s eigenvalues A and eigenvectors x satisfy Az = A\x.
A’s kth leading principal minors is the determinant of the upper-left k& by
k submatrix.

v

» Given a function f, we will:
» Find its Hessian.
» Find its eigenvalues or leading principal minors.
» Determine over what region the Hessian is PSD.
» Over that region, the function is convex.
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An example

» Consider the NLP

min f(z1,22),

where

fxr,20) = 2] + a3
+ T129 — 2271 — 4:1,‘2.

> Its gradient and Hessian are

2x1 + 19 — 2 2 1
vf(x1’$2):[azfl—i—2iz—4] and V2f(x1,$2)=[1 2].
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An example

flx1,2z2) = m% —I—a:% + x1x0 — 221 — 429,

v

To find the eigenvalues of V2 f(x1, ), recall that

Ar=X X & (A-X)zx=0 <& det(A-X\)=0.

v

For our V2 f(x1,22), we have

2—-A 1
1 2—-A

‘:0 & 3-4+X=0 < A=1lor3.

v

Or by leading principal minors:

2 1
| 2 =2 and ’1 2’:3.

v

So V2 f(x1,x2) is PSD and thus mingepe f(21,72) is a CP. The FOC
requires 2z7 + x5 —2 =0 and x} + 225 —4 =0, i.e., (zF,z3) = (0,2).
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Another example

v

Consider f(z1,xs) = o3 + 4x129 + 23 + 21 + 2. When is it convex?

61}14
4 1|

When is the Hessian positive semi-definite?

Its Hessian is

v

v

» We need the first leading principal minor 6z; > 0.
» We need the second leading principal minor 6z; — 16 > 0.

v

Therefore, the function is convex if and only if z; > %.
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Solving constrained NLPs

» For unconstrained NLPs, we have enough tools:

» We may determine whether the objective function is convex.
» We may use the FOC to find all local minima.

How about constrained NLPs?

We may always try the following strategy:

v

v

» Ignore all the constraints.
» Find a global minimum.
» If it is feasible, it is optimal.

v

It an unconstrained global minimum is infeasible, what should we do?

| |
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Solving single-variate constrained NLPs

v

Let’s solve

. 2 _
min flz) =a"+2z—3.

v

We have f'(z) =2z + 2 and f"(z) = 2.
f is convex and the solution satisfying the
FOC is £ = —1. However, it is infeasible!

v

v

For a single-variate NLP, the feasible
solution that is closest to the
FOC-solution is optimal.

Feasible region

2

Nonlinear Programming (Part 2) 18 /38

|
Ling-Chieh Kung (NTU IM)




Multi-variate convex analysis Solving constrained NLPs Applications
0000000000000 0 000®000000000000 0000000

Solving multi-variate constrained NLPs

> Let’s solve
min  f(z) = (21 —2)* +4(x2 — 1)° N
z€R2 B D
s.t. a1+ 2.’172 < 2. P /]
» For this CP, the FOC-solution 7 = (2,1) L Climcst fons

is infeasible.

v

The closest feasible point is not optimal!

v

We need a way to deal with constraints.

f(x) = 2% +22 - 3.

|
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Relaxation with rewards

» Recall our strategy: First ignore all constraints, and then ...
» Ignoring all constraints is “too much”!
» An infeasible solution should be bad.
» But this cannot be revealed in the relaxed NLP.
» While we allow one to violate constraints, we encourage feasibility.
» Consider an original NLP
ma T
EER% f( )
st. gi(z)<b; Vi=1,..,m.
» How to allow one to violate constraints but encourage feasibility?

» For constraint ¢, let’s associate a unit reward \; > 0 to it.
» If a solution Z satisfies constraint ¢ (so b; — g;(Z) > 0), “reward” the
solution by A;[b; — g:(Z)]. Let’s add this into the relaxed NLP.

| |
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Lagrangian relaxation

» For an original NLP

z* = max {f(ac)

TER™

we relax the constraints and add rewards for feasibility into the
objective function:

BN = max fla)+ zfjA b - (0] @)

zER™

» Let’s assume that \;s are given for a while.
» To help solve the NLP, we should have \; > 0. This rewards feasibility
and penalize infeasibility.

> L(z|\) = f(z) + >0 Ai[bi — gi(x)] is the Lagrangian given .
» )\;s are the Lagrange multipliers.

| |
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An example

» Consider the following example

2" =max =z + T2
st. zi4ai<s
T2 < 6.

» For this original NLP, the optimal
solution is z* = (2,2). z* = 4.

» What are the Lagrangian and
Lagrangian relaxation?

| |
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An example

» The original NLP is z* = m%Rg {xl + m’x% + x% <8 xy < 6}.
xe

» Given Lagrange multipliers A = (A1, A2) > 0, the Lagrangian is

L(z]\) =21+ 2o + M1 (8 — 27 — 23) + Aa(6 — z2).

» The Lagrangian relaxation is

L
A) = L(x|N).
27 (A) = max L(z|})
» Some Lagrange multipliers:

» 27(0,1) = max z1 + 6 = oco.
zER2

» 20(1,2) = max —2? 4+ 31 — 22 — 22 4+ 20 = 20.5.
xR

> zL(l,O) = max —22 4+ 2 — 25 — 22+ 8=8.5.
z€R

» All the 2%(\) above is greater than 2* = 4! Will this always be true?
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Lagrangian relaxation provides a bound
» The Lagrangian relaxation provides a bound for the original NLP.
Proposition 5
For the two NLPs defined in (1) and (2), 2X(\) > 2* for all A > 0.
Proof. We have

#* = max { (@)

zER™

gl(x) < bl Vi = 1, ,m}

IN

max {f(x) + Z)\i[bi - gi(z)]

€Rn
¥ i=1

gi(x) < b; Vi = 1m}

IN

max { 7(0) + 3 A - (o] = 200

TER™
i=1

where the first inequality relies on A > 0. O

|
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Lagrangian duality

» Given a constrained original NLP, solving its Lagrangian relaxation
gives us some information.
» A similar situation happened to LP!
» Any feasible dual solution gives a bound to the primal LP.
» We look for an dual optimal solution that gives a tight bound.

» Given that z%()\) > z* for all A > 0, it is natural to define

L
A
min 27
as the Lagrangian dual program.

» Lagrange multipliers are dual variables in NLP.
» LP duality is a special case of Lagrangian duality: The Lagrangian
relaxation of an LP is the dual LP.

» Lagrangian duality possesses several properties (beyond the scope).
> Just intuitively treat A; as the dual variable for constraint i.

: :
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The KKT condition

» Now we present the most useful optimality condition for general NLPs:

Proposition 6 (KKT condition)
For a “regular” NLP

max  f(z)

st. gi(x) <b; Yi=1,..,m.

if T is a local maz, then there exists A € R™ such that
> gi(Z) <b; foralli=1,...,m,

» A>0 and Vf(Z) =", \iVgi(T), and

Ailbi — gi(@)] =0 for alli =1,...,m.

v

v

All NLPs in this course (and most in the world) are “regular”.
The condition is necessary for general NLPs but also sufficient for CPs.

v

: :
Nonlinear Programming (Part 2) 26 /38 Ling-Chich Kung (NTU IM)




Multi-variate convex analysis Solving constrained NLPs Applications
0000000000000 0 0000000000 0e0000 0000000
: :

The KKT condition

There are three conditions for & to be a local maximum.

v

v

Primal feasibility: ¢;(z) <b; foralli=1,...,m.
> It must be feasible.

Dual feasibility: A > 0 and Vf(Z) = > i, \iVgi(Z).
» The equality is the FOC for the Lagrangian £(Z|)\):

v

m

V{f(x)—i—Z)\i[bi—gi(m)]}:O & vf(i:)—Z)\Ngi(i):O.

=1

v

Complementary slackness: \;[b; — ¢;(Z)] =0 foralli =1,...,m.

» Dual variable x primal slack = 0.
» If a constraint is nonbinding, the Lagrange multiplier is 0.

» Let’s visualize the KKT condition.

| |
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Visualizing the KKT condition

» Consider

max I — T2
st 2f+ai<4
—a? — (20 +2)* < —4.

» Graphically, z* = (v/3,1) is
optimal.

» What happens to V f, Vg1, and
Vgo at x*7

| |
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Visualizing the KKT condition

max f(z) =x1 —x2
st. gi(z) = 22+ a2 <4 /E.
g2(x) = —af — (22 +2)* < —4.
> We have Vf(z) = (1,—1),
Vg1 (z) = (221, 222), and ~ 0
Vga(z) = (—2x1, —2(z2 + 2)),
» Therefore, Vf(z*) = (1,-1),
Vgr(e*) = (2v/3,-2), and e
Vgo(r*) = (—2v3,-2).
» The existence of A > 0 such that Vv f(z*) = A1 Vg1 (z*) + AaVga(z*)
simply means that V f is “in between” Vg and Vgs at x*.

» Otherwise there is a feasible improving direction.
» Complementary slackness A;[b; — gi(z*)] says that only constraints
binding at z* matter.

|
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Applying the KKT condition

max f(z) =x1 — x2
st. gi(z) =z +a23<4
g2(2) = 2% — (22 +2)* < —4.
» The Lagrangian is

L(z|N) =21 — 20 + M\ (4 — 27 —22) + (=4 + 22 + (23 +2)?).

> aﬁa(afll)‘) =1-2(A1 — A2)z1 and %ﬁl)‘) =—1—-2(A — A2)z2 + 4.

» A solution Z is a local maximum only if there exists A such that
22 bl <4, -2 — (1 +2)2 < —4
>\1 2 07 )\2 2 0
1-— 2()\1 — /\2).’1)1 =0,—-1— 2()\1 — /\2)1‘2 +4X =0
M(4— 22 —22) =0, \a(—4 + 27 + (22 +2)%) = 0.
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The KKT condition for analysis

v

In general, if there are n variables and m constraints.
» There are n primal variables (z) and m dual variables (X).
» There are n equalities for dual feasibility.
» There are m equalities for complementary slackness.

v

As those equalities are nonlinear, there may be multiple solutions
satisfying those equalities.

» Those inequalities are then used to eliminate some solutions.

v

If we have all local maxima, we compare them for a global maximum.

» Nonlinear equations are hard to solve (even numerically).
» Too time consuming in general.

v

Nevertheless, we will see that the KKT condition is useful for
analyzing many problems in business and economics.

:
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Multi-product EOQ problem

> Recall that we have solved the EOQ problem

where h is the unit holding cost per year, K is the ordering cost per
order, and D is the annual demand. The EOQ is ¢* = V#‘

» What if we procure two products? We solve

h KD K>D
min 191 + 11 + hago + 2 2'
01>0,02>0 2 q 2 q2

The problem is separable; the optimal quantities are the two EOQs.

| |
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Multi-product EOQ problem

What if we have only a limited space for these two products?

v

‘We solve

v

h KD K>D
min 141 n 11 + haqo n 22
q120,922>0 2 q1 2 q2

st. viqr +veqe < W,

where W is the total space and v; is the volume of product 3.

v

Assumptions:

» We assume that products can be “in any shape”.

» This constraint can also be modeling budgets or something else.

» We do not try to “synchronize” the procurement processes (so we assume
the orders for the two products may arrive at the same time).

v

How to solve this problem?

v

To simplify the derivation, assume that v; = v, =1 and hy = he = h.

| |
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Convexity of the problem
» Our (simplified) two-product EOQ problem

h KiD h KD,
min ﬂ—i——l 1+ﬂ+—2 2
@120,¢2>0 2 Q1 2 )

st. g1 +q<W,

is a CP:
» The objective function is convex; the Hessian matrix
K 51 0
qi
KsDo
0 2
g2

is positive semi-definite.
» The feasible region is convex.
» A local minimum is a global minimum.
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The FOC for the Lagrangian

» The Lagrangian is

h KD h KsD
E(q|)\)=%+ (111 1-1-%4— (212 21 AW = g1 — go).

» The FOC for the Lagrangian is

0 h KiD;

gy =2 - ~A=0and
aqlﬁ(q| ) 5 p 0 an
0 h KsDy

Z rn =2 A=

90 (@A) =3 e

Note that this must be satisfied by any optimal solution!
» Therefore, we have

KiD;  KaDs @ [KiDy
2 2 < — = :
qi q3 q2 KDy

|
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Solving the multi-product EOQ problem

» Now we are ready to solve our two-product EOQ problem

. haq KD, hga ~ Ka2Ds
min — +—+
120,920 2 q1 2 q2

» If the unconstrained optimal solution (g1, g2) <1/ 28D, 2K2D 2)

satisfies ¢1 + g2 < W, it is optimal.

q1+q2 SW}-

» Otherwise, the capacity constraint must be binding. The solution to
the two equalities

q1 KD,
=W d ==
g1+ q2 an " KDy

w w

b
K2D2 KlDl
Ko, 1T\,

is optimal; i.e., (¢1,G2) = ( ) is optimal.
1+
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Solving the multi-product EOQ problem

» Collectively, the optimal solution is

(/5 )

if /2500 4 /2502 <

k k)
(a1,93) = w w
— — otherwise.
2572 1271
I+ VxDn 1+ VD
350
2K,D [2k,D, Ky = 50
300 H\Y-—Hh Dr——=—200
z Ky = 30
‘' 250 Dy =100
2 \ W = 140
%‘200
NN
(o4
N
Z100 1 4
S &
50 1=
0
05 15 25 35 45 55 65 75 85
h ($ per unit per year)
Nonlinear Programming (Part 2) 38 /38 Ling-Chieh Kung (NTU IM)




	Multi-variate convex analysis
	Solving constrained NLPs
	Applications

