Retailer competitions 000000000

IM 2010: Operations Research, Spring 2014 Game Theory (Part 1): Static Games

Ling-Chieh Kung

Department of Information Management National Taiwan University

May 15, 2014

Brief history of game theory

- ▶ So far we have focused on decision making problems with only one decision maker.
- ► **Game theory** provides a framework for analyzing **multi-player** decision making problems.
- ▶ While it has been implicitly discussed in Economics for more than 200 years, game theory is established as a field in 1934.
 - ▶ In 1934, John von Neumann and Oskar Morgenstern published a book *Theory of games and economic behaviors.*
- ▶ Since then, game theory has been widely studied, applied, and discussed in mathematics, economics, operations research, industrial engineering, computer science, etc.
 - Actually almost all fields of social sciences and business have game theory involved in.
 - ▶ The Nobel Prizes in economic sciences have been honored to game theorists (broadly defined) in 1994, 1996, 2001, 2005, 2007, and 2012.

Road map

► Introduction.

- ▶ Nash equilibrium.
- ▶ Retailer competitions.

Retailer competitions 000000000

Prisoners' dilemma: story

- ▶ A and B broke into a grocery store and stole some money. Before police officers caught them, they hided those money carefully without leaving any evidence. However, a monitor got their images when they broke the window.
- ► They were kept in two separated rooms. Each of them were offered two choices: **denial or confession**.
 - ▶ If both of them deny the fact of stealing money, they will both get one month in prison.
 - ▶ If one of them confesses while the other one denies, the former will be set free while the latter will get nine months in prison.
 - ▶ If both confesses, they will both get six months in prison.
- ► They **cannot communicate** and must make choices **simultaneously**.
- ▶ What will they do?

Retailer competitions 000000000

Prisoners' dilemma: formulation

▶ We may use the following matrix to summarize this "game":

		Player 2	
		Denial	Confession
Player 1	Denial	-1, -1	-9,0
	Confession	0, -9	-6, -6

- ► There are two **players**. Player 1 is the **row player** and player 2 is the **column player**.
- ► For each combination of actions, the two numbers are the **payoffs** under their actions: the first for player 1 and the second for player 2.
- ▶ E.g., if both prisoners deny, they will both get one month in prison, which is represented by a payoff of -1.
- ▶ E.g., if prisoner 1 denies and prisoner 2 confesses, prisoner 1 will get 0 month in prison (and thus a payoff 0) and prisoner 2 will get 9 months in prison (and thus a payoff −9).

Retailer competitions 000000000

Prisoners' dilemma: solution

▶ Let's **solve** this game by **predicting** what they will/may do.

	Player 2		
		Denial	Confession
Player 1	Denial	-1, -1	-9,0
	Confession	0, -9	-6, -6

- ▶ Player 1 thinks:
 - "If he denies, I should confess."
 - "If he confesses, I should still confess."
 - ▶ "I see! I should **confess** anyway!"
- ▶ For player 2, the situation is the same and he will also **confess**.
- ► The solution of this game, i.e., the equilibrium outcome, is that both prisoner confess.
- ▶ Note that this outcome can be "improved" if they **cooperate**.
 - ► This situation is said to be (socially) **inefficient**.

Static games

- ► A game like the prisoners' dilemma in which all players choose their actions **simultaneously** is called a **static game**.
- ▶ This question (with a different story) was first raised by Professor Tucker (one of the names in the KKT condition) in a seminar.
- ▶ In this game, confession is said to be a **dominant strategy**.
 - ► A dominant strategy should be chosen anyway.
- ► Lack of coordination can result in a lose-lose outcome.
- ▶ Interestingly, even if they have promised each other to deny once they are caught, this promise is **non-credible**. Both of them will still confess to maximize their payoffs.

Applications of prisoners' dilemma

- Two companies are both active in a market. At this moment, they both earn \$4 million dollars per year.
- ▶ Each of them may advertise with an annual cost of \$3 million:
 - If one advertises while the other does not, she earns \$9 millions and the competitor earns \$1 million.
 - If both advertise, both will earn \$6 millions.

	Advertise	Be silent
Advertise	3, 3	6, 1
Be silent	1, 6	4,4

▶ What will they do?

- ▶ Two countries are neighbors.
- Each of them may choose to develop a new weapon:
 - ► If one does so while the other one keeps the current status, the former's payoff is 20 and the latter's payoff is -100.
 - ► If both do this, however, their payoffs are both -10.

	MW	CS
MW	-10, -10	20, -100
\mathbf{CS}	-100,20	0,0

▶ What will they do?

Predicting the outcome of other games

- ▶ How about games that are not a prisoners' dilemma? Do we have a systematic way to predict the outcome?
- ▶ What will be the outcome (a combination of actions chosen by the two players) of the following game?

	Left	Middle	Right
Up	1, 0	1, 2	0, 1
Down	0, 3	0, 1	2, 0

Retailer competitions 000000000

Eliminating strictly dominated options

- ▶ We may apply the same trick we used to solve the prisoners' dilemma.
- ► For player 2, playing Middle strictly dominates playing Right. So we may eliminate the column of Right without eliminating any possible outcome:

Left Middle Right		Left Middle
$Up \left \begin{array}{c} 1,0 \end{array} \right 1,2 \left \begin{array}{c} 0,1 \end{array} \right $	\rightarrow	Up $\mid 1,0 \mid 1,2$
Down 0,3 0,1 2,0		Down 0,3 0,1

▶ Now, player 1 knows that player 2 will never play Right. Down is thus dominated by Up and can be eliminated.

	Left	Middle	\rightarrow _		Loft	Middle
Up	1,0	1,2		Un		1.0
Down	0, 3	0, 1		Op	1,0	1,2

▶ What is the outcome of this game?

Retailer competitions 000000000

Eliminating strictly dominated options

- ► The above idea is called the iterative elimination of strictly dominated strategies.
- ▶ It solves some games. However, is also fails to solve some others.
- ▶ Consider the following game "Matching pennies":

	Head	Tail
Head	1, -1	-1, 1
Tail	-1,1	1, -1

- ▶ What may we do when no strategies can be eliminated?
- ► In 1950, John Nash developed the concept of equilibrium solutions, which are called Nash equilibria nowadays.

Road map

- ▶ Introduction.
- ▶ Nash equilibrium.
- ▶ Retailer competitions.

Nash equilibrium $0 \bullet 000$

Retailer competitions 000000000

Nash equilibrium: definition

▶ The concept of Nash equilibrium is defined as follows:

Definition 1

For an n-player game, let S_i be player *i*'s action space and u_i be player *i*'s utility function, i = 1, ..., n. An action profile $(s_1^*, ..., s_n^*)$, $s_i^* \in S_i$, is a Nash equilibrium if

$$u_i(s_1^*, \dots, s_{i-1}^*, s_i^*, s_{i+1}^*, \dots, s_n^*) \\\geq u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*)$$

for all $s_i \in S_i, i = 1, ..., n$.

- In other words, s_i^* is optimal to $\max_{s_i \in S_i} u_i(s_1^*, ..., s_{i-1}^*, s_i, s_{i+1}^*, ..., s_n^*)$.
- ▶ If all players are choosing a strategy in a Nash equilibrium, no one has an incentive to **unilaterally deviates**.

Introduction 00000000	Nash equilibrium 00●00	Retailer competitions

Nash equilibrium: an example

▶ Consider the following game in which no action is strictly dominated:

	L	C	R
Т	0,7	7,0	5, 4
М	7,0	0,7	5, 4
В	4,5	4, 5	6, 6

- ▶ What is a Nash equilibrium?
 - ▶ (T, L) is not: Player 1 will unilaterally deviate to M or B.
 - ▶ (T, C) is not: Player 2 will unilaterally deviate to L or R.
 - ▶ (B, R) is: No one will unilaterally deviate.
 - ▶ Any other Nash equilibrium?

Retailer competitions 000000000

Nash equilibrium as a solution concept

- ▶ In a static game, a Nash equilibrium is a reasonable outcome.
 - ▶ Imagine that the players play this game **repeatedly**.
 - ► If they happen to be in a Nash equilibrium, no one has the incentive to unilaterally deviate, i.e., to change her action while all others keep their actions.
 - ▶ If they do not, at least one will deviate. This process will continue until a Nash equilibrium is reached.
- ► For example, if they starts at (T, L), eventually they will stop at (B, R), the unique Nash equilibrium of this game.

	\mathbf{L}	\mathbf{C}	R
Т	0,7	7,0	5,4
Μ	7,0	0,7	5,4
В	4, 5	4, 5	6, 6

• A non-Nash solution is **unstable**.

Retailer competitions

Nash equilibrium: More examples

	Denial Confession
Is there any Nash equilibrium of the prisoners' dilemma?	Denial $ -1, -1 -9, 0$
	Confession $ 0, -9 -6, -6$
Is there any Nash equilibrium	Denial Confession
of the game "BoS"?	Denial $ -1, -1 -9, 0$
Bach or Stravinsky.	Confession $ 0, -9 -6, -6$
Is there any Nash equilibrium	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

of the matching pennies game?

Tail

-1, 1

1, -1

Road map

- Introduction.
- ▶ Nash equilibrium.
- ▶ Retailer competitions.

Cournot Competition

- ► In 1838, Antoine Cournot introduced the following **quantity competition** of a homogeneous product between two retailers.
- Let q_i be the production quantity of firm i, i = 1, 2.
- ▶ The market-clearing price p of the product depends on the aggregate demand $q = q_1 + q_2$:

$$p = a - q = a - q_1 - q_2.$$

- Unit production cost of both firms is c < a.
- Our questions are:
 - ▶ In this environment, what will these two firms do?
 - ▶ Is the outcome efficient?
 - ▶ What is the difference between monopoly and duopoly (i.e., integration and decentralization).

Formulations

▶ Suppose they cooperate (collude) in making this decision:

$$\pi^{\mathbf{C}} = \max_{q_1 \ge 0, q_2 \ge 0} q_1(a - q_1 - q_2 - c) + q_2(a - q_1 - q_2 - c).$$

- The unique optimal solution is $q_1^{**} = q_2^{**} = \frac{a-c}{4}$ with $\pi^{C} = \frac{(a-c)^2}{4}$.
- ▶ Suppose two firms are making their decisions:
 - ▶ Firm 1 and firm 2 simultaneously solve their problems

$$\pi_1^{\mathrm{D}} = \max_{q_1 \ge 0} u_1(q_1|q_2) \quad \text{and} \quad \pi_2^{\mathrm{D}} = \max_{q_2 \ge 0} u_2(q_2|q_1),$$

where their payoff functions are

$$u_i(q_i|q_{3-i}) = q_i(a - q_i - q_{3-i} - c) \quad \forall i = 1, 2.$$

▶ As for an outcome, we look for a Nash equilibrium.

Introduction 000000000	Nash equilibrium 00000	Retailer competitions $000 \bullet 00000$

Formulations

- If (q_1^*, q_2^*) is a Nash equilibrium, it must leave no incentive for either firm to unilaterally deviate.
 - For firm 1, that means q_1^* is **optimal** given that firm 2 chooses q_2^* .
 - ▶ In this case, firm 1's problem is

$$\max_{q_1 \ge 0} u_1(q_1 | q_2^*) = \max_{q_1 \ge 0} q_1(a - q_1 - q_2^* - c)$$

▶ The FOC requires

$$u_1'(q_1|q_2^*)|_{q_1=q_1^*} = a - 2q_1^* - q_2^* - c = 0,$$

i.e., $q_1^* = \frac{1}{2}(a - q_2 - c)$ (is it optimal?).

- In fact, $R_1(q_2) = \frac{1}{2}(a-q_2-c)$ is firm 1's **best response function** given any firm 2's action q_2 .
- Similarly, for firm 2 we need $q_2^* = \frac{1}{2}(a q_1^* c)$.
 - Firm 2's best response to firm 1's action q_1 is $R_2(q_1) = \frac{1}{2}(a q_1 c)$.

Solving the Cournot competition

- ▶ Let's use the two equalities:
 - ▶ If (q_1^*, q_2^*) is a Nash equilibrium, it must satisfy

$$q_1^* = \frac{1}{2}(a - q_2^* - c)$$
 and $q_2^* = \frac{1}{2}(a - q_1^* - c).$

- The unique solution to this system is $q_1^* = q_2^* = \frac{a-c}{3}$.
- Or we may use the two best response functions:
 - ► A Nash equilibrium always lies on an **intersection** of all the best response functions.
- In equilibrium, firm i earns

$$\pi_i^{\rm D} = \frac{(a-c)}{3} \left[a - \frac{2(a-c)}{3} - c \right] = \frac{(a-c)^2}{9}.$$

Distortion due to decentralization

► Comparison:

Scenario	Aggregate quantity	Aggregate profit
Integration	$q^{**} = \frac{a-c}{2}$	$\pi^{\mathcal{C}} = \frac{(a-c)^2}{4}$
Decentralization	$q_1^* + q_2^* = \frac{2(a-c)}{3}$	$\pi_1^{\rm D} + \pi_2^{\rm D} = \frac{2(a-c)^2}{9}$

- ▶ For profits, integration results in **win-win** and is more efficient.
- ► For quantities:
 - If they cooperate, each will order $\frac{a-c}{4}$.
 - Once they do not cooperate, each will order $\frac{a-c}{3}$.
 - ▶ Why does one intend to **increase** its quantity under decentralization?
- ▶ $(q_1, q_2) = (\frac{a-c}{4}, \frac{a-c}{4})$ profit-improving but **not** a Nash equilibrium:
 - If $q'_2 = \frac{a-c}{4}$, firm 1 deviates to $q''_1 = R_1(q'_2) = \frac{1}{2}(a-q'_2-c) = \frac{3(a-c)}{8}$.
 - This a prisoners' dilemma!

Inefficiency due to decentralization

- ▶ How about consumers?
 - Under decentralization, the aggregate quantity is $\frac{2(a-c)}{3}$ and the market-clearing price is $\frac{a-c}{3}$.
 - ▶ Under integration, the aggregate quantity is $\frac{a-c}{2}$ and the market-clearing price is $\frac{a-c}{2}$.
- Under decentralization, more consumers buy this product with a lower price.
 - ► Consumers benefits from competition.
 - ▶ Integration benefits the firms but hurts consumers.

Retailer competitions 0000000000

Bertrand competition

- In 1883, Joseph Bertrand considered another format of retailer competition: They choose prices instead of quantities.
- Firm *i* chooses price p_i , i = 1, 2.
- Firm i's demand quantity is

$$q_i = a - p_i + bp_{3-i}, i = 1, 2.$$

- ▶ $b \in [0, 1)$ measures the **intensity of competition**: The larger b, the more intense the competition.
- ▶ Why *b* < 1?
- Unit production cost c < a.

Retailer competitions 00000000

Solving the Bertrand competition

- ▶ Suppose (p_1^*, p_2^*) is a Nash equilibrium.
- For firm 1, p_1^* must be optimal to

$$\max_{p_1 \ge 0} \pi_1(p_1|p_2^*) = (a - p_1 + bp_2^*)(p_1 - c).$$

Therefore, $p_1^* = \frac{1}{2}(a + bp_2^* + c)$.

- Similarly, $p_2^* = \frac{1}{2}(a + bp_1^* + c)$.
- The unique Nash equilibrium is $p_1^* = p_2^* = \frac{a+c}{2-b}$.
- ▶ If they cooperate (collude), they solve

$$\max_{p_1 \ge 0, p_2 \ge 0} (a - p_1 + bp_2)(p_1 - c) + (a - p_2 + bp_1)(p_2 - c).$$

- ▶ The unique optimal solution is $p_1^{**} = p_2^{**} = \frac{a+c(1-b)}{2(1-b)} > p_1^* = p_2^*$ (why?).
- ▶ Why firms intend to decrease the price under decentralization?
- Does integration hurt or benefit the firms? How about consumers?

