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1. (a) Let the parameters be

Di = the demands for air conditioners of month i, i = 1, ..., 6.

Let the decision variables be

hj = production quantity of month i in Hsinchu, i = 1, ..., 6,

tj = production quantity of month i in Taoyuan, i = 1, ..., 6,

xi = ending inventory of month i, i = 1, ..., 6.

min

6∑
i=1

(400hi + 350ti + 80xi)

s.t. 2000 + h1 + t1 − 2500 = x1

xi−1 + hi + ti −Di = xi ∀i = 2, ..., 6

2hi ≤ 4000 ∀i = 1, ..., 6

2.5ti ≤ 4000 ∀i = 1, ..., 6.

xi ≥ 0, hi ≥ 0, ti ≥ 0 ∀i = 1, ..., 6

(b) Let the parameters be

Di = the maximum demands for air conditioners of month i, i = 1, ..., 6.

Let the decision variables be

si = sales quantity of month i, i = 1, ..., 6,

hi = production quantity of month i in Hsinchu, i = 1, ..., 6,

ti = production quantity of month i in Taoyuan, i = 1, ..., 6,

xi = ending inventory of month i, i = 1, ..., 6.

max

6∑
i=1

(600si − 400hi − 350ti − 80xi)

s.t. 2000 + h1 + t1 − s1 = x1

x1 + h2 + t2 − s2 = x2

x2 + h3 + t3 − s3 = x3

x3 + h4 + t4 − s4 = x4

x4 + h5 + t5 − s5 = x5

x5 + h6 + t6 − s6 = x6

xi ≥ 0 ∀i = 1, ..., 6

si ≤ Di ∀i = 1, ..., 6

2hi ≤ 4000 ∀i = 1, ..., 6

2.5ti ≤ 4000 ∀i = 1, ..., 6.

2. Let the parameters be

Cij = the cost for worker i to 100% complete job j, i = 1, ...,m, j = 1, ..., n.
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Let the decision variables be

aij = the proportion of job j that worker i completes, i = 1, ...,m, j = 1, ..., n.

min

m∑
i=1

n∑
j=1

aijCij

s.t.

m∑
i=1

aij = 1 ∀j = 1, ..., n

n∑
j=1

aij ≤ 2 ∀i = 1, ...,m

aij ∈ [0, 1] ∀i = 1, ...,m, j = 1, ..., n.

3. (a) The feasible region and isoquant line are illustrated in Figure 1. It is clear that we should
push the isoquant line until we stop at the extreme point (0, 9), which is an optimal solution.

Figure 1: Graphical solution for Problem 3

(b) The standard form is

max x1 + 2x2 − 2x3

s.t. x1 − x2 + x3 + x4 = 4

x1 + x2 − x3 + x5 = 9

xi ≥ 0 ∀i = 1, ..., 5.

Since in the standard form we have five variables and three constraints, there should be three
basic variables and two nonbasic variables in a basic solution. The ten possible ways to choose
two (nonbasic) variables to be 0 are listed in the table below.
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x1 x2 x3 x4 x5 basis Basic feasible solution?

13
2

5
2 0 0 0 {x1, x2} Yes

13
2 0 - 52 0 0 {x1, x3} No

9 0 0 -5 0 {x1, x4} No

4 0 0 0 5 {x1, x5} Yes

0 – – 0 0 {x2, x3} No

0 9 0 13 0 {x2, x4} Yes

0 -4 0 0 13 {x2, x5} No

0 0 -9 13 0 {x3, x4} No

0 0 4 0 13 {x3, x5} Yes

0 0 0 4 9 {x4, x5} Yes

(c) The initial tableau is

−1 −2 2 0 0 0

1 −1 1 1 0 x4 = 4

1 1 −1 0 1 x5 = 9

We use smallest index rule and run four iterations to get

−1 −2 2 0 0 0

1 −1 1 1 0 x4 = 4

1 1 −1 0 1 x5 = 9

→

0 −3 3 1 0 4

1 −1 1 1 0 x1 = 4

0 2 −2 −1 1 x5 = 5

→

0 0 0 − 1
2

3
2

23
2

1 0 0 1
2

1
2 x1 = 13

2

0 1 −1 − 1
2

1
2 x2 = 5

2

→

1 0 0 0 2 18

2 0 0 1 1 x4 = 13

1 1 −1 0 1 x2 = 9

an optimal solution to the original LP is (x∗
1, x

∗
2) = (0, 9) with objective value z∗ = 18.

(d) The original LP becomes

max x1 + 2x2 − 2x3

s.t. x1 − x2 + x3 + x4 = 4

2x1 − x2 + x3 + x5 = 10

xi ≥ 0 ∀i = 1, ..., 5.

The initial tableau is

−1 −2 2 0 0 0

1 −1 1 1 0 x4 = 4

2 −1 1 0 1 x5 = 10

We use smallest index rule and run four iterations.
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−1 −2 2 0 0 0

1 −1 1 1 0 x4 = 4

2 −1 1 0 1 x5 = 10

→

0 −3 3 1 0 4

1 −1 1 1 0 x1 = 4

0 1 −1 −2 1 x5 = 2

→

0 0 0 −5 3 10

1 0 0 −1 1 x1 = 6

0 1 −1 −2 1 x2 = 2

We can notice that x4 is the only variable with negative coefficient in 1st row while its
coefficient are all negative in other rows. It means that the constraint is unbounded, so we
can’t find the objective value in this modified LP.

4. (a) The exterme points are listed as follows.

x1 x2 x3

(0 , 0 , 3)
(0 , 0 , 9)
(0 , 6 , 3)
(4 , 0 , 3)
(4 , 0 , 5)
(5 , 1 , 3)

(b) The standard form LP is

max x1 + 2x2

s.t. x1 − x2 + x4 = 4

x1 + x2 + x3 + x5 = 9

x3 − x6 = 3

xi ≥ 0 ∀i = 1, ..., 6.

We need to use two-phase implementation.

i. The Phase-I standard form LP is

min x7

s.t. x1 − x2 + x4 = 4

x1 + x2 + x3 + x5 = 9

x3 − x6 + x7 = 3

xi ≥ 0 ∀i = 1, ..., 7.

First, solve the Phase-I LP which tries to minimize x7.

0 0 0 0 0 0 −1 0

1 −1 0 1 0 0 0 x4 = 4

1 1 1 0 1 0 0 x5 = 9

0 0 1 0 0 −1 1 x7 = 3

→

0 0 1 0 0 −1 0 3

1 −1 0 1 0 0 0 x4 = 4

1 1 1 0 1 0 0 x5 = 9

0 0 1 0 0 −1 1 x7 = 3

→

0 0 0 0 0 0 1 0

1 −1 0 1 0 0 0 x4 = 4

1 1 0 0 1 1 −1 x5 = 6

0 0 1 0 0 −1 1 x3 = 3
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ii. Then, solve the Phase-II LP.We use smallest index rule and run four iterations to get

−1 −2 0 0 0 0 0

1 −1 0 1 0 0 x4 = 4

1 1 0 0 1 1 x5 = 6

0 0 1 0 0 −1 x3 = 3

→

0 −3 0 1 0 0 4

1 −1 0 1 0 0 x1 = 4

0 2 0 −1 1 1 x5 = 2

0 0 1 0 0 −1 x3 = 3

→

0 0 0 − 1
2

3
2

3
2 7

1 0 0 1
2

1
2

1
2 x1 = 5

0 1 0 − 1
2

1
2

1
2 x2 = 1

0 0 1 0 0 −1 x3 = 3

→

1 0 0 1 2 2 12

2 0 0 1 1 1 x4 = 10

1 1 0 0 1 1 x2 = 6

0 0 1 0 0 −1 x3 = 3

an optimal solution to the LP is (x∗
1, x

∗
2) = (0, 6) with objective value z∗ = 12. There isn’t

any iteration that has no improvement.

5. The standard form is

max x1 + 2x2

s.t. x1 − x2 + x4 = 4

x1 + x2 + x3 + x5 = 7

x3 − x6 = 3

xi ≥ 0 ∀i = 1, ..., 6.

(a) The bases of the problem correspond to four same bfs as below, so it’s a degenerate LP.

basis x1 x2 x3 x4 x5 x6

{x1, x2, x3} 4 0 3 0 0 0

{x1, x3, x4} 4 0 3 0 0 0

{x1, x3, x5} 4 0 3 0 0 0

{x1, x3, x6} 4 0 3 0 0 0

(b) The LP has no trivial bfs. We need to use two-phase implementation.

i. First, solve the Phase-I LP which tries to minimize x6.

0 0 0 0 0 0 −1 0

1 −1 0 1 0 0 0 x4 = 4

1 1 1 0 1 0 0 x5 = 7

0 0 1 0 0 −1 1 x7 = 3

→

0 0 1 0 0 −1 −1 3

1 −1 0 1 0 0 0 x4 = 4

1 1 1 0 1 0 0 x5 = 7

0 0 1 0 0 −1 1 x7 = 3

→

0 0 0 0 0 0 1 0

1 −1 0 1 0 0 0 x4 = 4

1 1 0 0 1 1 −1 x5 = 4

0 0 1 0 0 −1 1 x3 = 3

ii. Then, solve the Phase-II LP. We use smallest index rule and run four iterations.
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−1 −2 0 0 0 0 0

1 −1 0 1 0 0 x4 = 4

1 1 0 0 1 1 x5 = 4

0 0 1 0 0 −1 x3 = 3

→

0 −3 0 1 0 0 4

1 −1 0 1 0 0 x1 = 4

0 2 0 −1 1 1 x5 = 0

0 0 1 0 0 −1 x3 = 3

→

0 0 0 − 1
2

3
2

3
2 4

1 0 0 1
2

1
2

1
2 x1 = 4

0 1 0 − 1
2

1
2

1
2 x2 = 0

0 0 1 0 0 −1 x3 = 3

→

1 0 0 0 2 2 8

2 0 0 1 1 1 x4 = 8

1 1 0 0 1 1 x2 = 4

0 0 1 0 0 −1 x3 = 3

The steps with highlight are degenerate basic feasible solutions, and they are also the iterations
that has no improvement.

6. The standard form is

max x1 + 2x2

s.t. x1 − x2 + x4 = 4

x1 + x2 + x3 + x5 = 9

x3 − x6 = 3

xi ≥ 0 ∀i = 1, ..., 6.

(a)

AB =

 1 0 0
1 1 1
0 1 0

 AN =

 −1 1 0
1 0 0
0 0 −1

 cB =

 1
0
0

 cN =

 2
0
0

 b =

 4
9
3


(b) The reduced costs are

c−T
N = cTBA

−1
B AN − cTN =

[
1 0 0

]  1 0 0
0 0 1
−1 1 −1

 −1 1 0
1 0 0
0 0 −1

− [ 2 0 0
]

=
[

1 0 0
]  −1 1 0

1 0 0
0 0 −1

− [ 2 0 0
]

=
[
−1 1 0

]
−
[

2 0 0
]

=
[
−3 1 0

]
→ We choose x2 to enter because its reduced cost is the most negative among the nonbasic
varibales.
→ xj = x2.

(c)

A−1
B b =

 1 0 0
0 0 1
−1 1 −1

 4
9
3

 =

 4
3
2



A−1
B A2 =

 1 0 0
0 0 1
1 1 −1

 −1
1
0

 =

 −1
0
2



→ ratio test:

 x1

x3

x5

 =


4
−1

3
0

2
2

→ x5 leaves.
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