Operations Research, Spring 2015 Suggested Solution for Homework 2

Solution providers: Kiwi Liu and Amy Liu
Department of Information Management National Taiwan University

1. Let the parameters be

$$
\begin{aligned}
& F_{i}=\text { the fixed cost of plant } i, i=1, \ldots, 3, \\
& V_{i}=\text { the variable cost of plant } i, i=1, \ldots, 3, \\
& C_{i}=\text { the capacity of plant } i, i=1, \ldots, 3
\end{aligned}
$$

Let the decision variables be

$$
\begin{aligned}
& x_{i}=\text { the amount of production of plant } i, i=1, \ldots, 3, \\
& y_{i}=\left\{\begin{array}{ll}
1 & \text { if the plat } i \text { is used to make products } \\
0 & \text { otherwise }
\end{array}, i=1, \ldots, 3 .\right. \\
& \min \quad \sum_{i=1}^{3}\left(F_{i} y_{i}+V_{i} x_{i}\right) \\
& \text { s.t. } \quad x_{i} \leq C_{i} y_{i} \quad \forall i=1, \ldots, 3 \\
& \qquad \sum_{i=1}^{3} x_{i}=25000 \\
& \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 3 \\
& y_{i} \in\{0,1\} \quad \forall i=1, \ldots, 3 .
\end{aligned}
$$

2. (a) Let the parameters be
$F_{i j}=$ the fixed cost of plant j that make procduct $i, i=1,2, j=1, \ldots, 3$,
$V_{i j}=$ the variable cost of plant j that make procduct $i, i=1,2, j=1, \ldots, 3$,
$C_{j}=$ the capacity of plant $j, j=1, \ldots, 3$,
$D_{i}=$ the demand of product $i, i=1, \ldots, 2$.

Let the decision variables be
$x_{i j}=$ the amount of production of plant j that make procduct $i, i=1,2, j=1, \ldots, 3$,
$y_{i j}=\left\{\begin{array}{ll}1 & \text { if the plat } j \text { is used to make product } i \\ 0 & \text { otherwise }\end{array}, i=1,2, j=1, \ldots, 3\right.$.

$$
\begin{array}{ll}
\min & \sum_{i=1}^{2} \sum_{j=1}^{3}\left(F_{i j} y_{i j}+V_{i j} x_{i j}\right) \\
\text { s.t. } & \sum_{j=1}^{3} x_{i j}=D_{i} \quad \forall i=1,2 \\
& \sum_{i=1}^{2} x_{i j} \leq C_{j} \quad \forall j=1, \ldots, 3 \\
& x_{i j} \leq C_{j} y_{i j} \quad \forall i=1,2, j=1, \ldots, 3 \\
& x_{i j} \geq 0 \quad \forall i=1,2, j=1, \ldots, 3 \\
& y_{i} \in\{0,1\} \quad \forall i=1,2, j=1, \ldots, 3 .
\end{array}
$$

(b) The minimum cost is $\$ 1013000$ and our strategy is
(1) Plant 1 produces 20000 units of product 1
(2) Plant 2 produces 5000 units of product 1 and 13000 units of product 2
(3) plant 3 produces 7000 units of product 2
3. (a) The linear relaxation of original LP is

$$
\left.\begin{array}{rlr}
\max \quad 3 x_{1}+4 x_{2}+5 x_{3}+4 x_{4} & \\
\text { s.t. } \quad 2 x_{1}+3 x_{2}+4 x_{3}+4 x_{4} & \leq 8 \\
& x_{1} & \leq 1 \\
& & \leq 1 \\
& & x_{2} \quad \\
& & \leq 1 \\
& & x_{4}
\end{array}\right)=1
$$

There are four items to select:

Item	1	2	3	4
Value	3	4	5	4
Weight	2	3	4	4
Ratio	$\frac{3}{2}$	$\frac{4}{3}$	$\frac{5}{4}$	1

By the tabular, we should put the items in the order: item $1>$ item $2>$ item $3>$ item4. Then, we can get the objective value $10 \frac{3}{4}$ and $x^{*}=\left(1,1, \frac{3}{4}, 0\right)$.
(b) As we know, if a dual constraint is nonbinding, the corresponding primal variable is zero. By Part(a), we know that only $x 4$ equals to zero, so the dual constraints (1)(2)(3) must be binding. The dual LP is

$$
\begin{aligned}
\min & 8 u_{1}+u_{2}+u_{3}+u_{4}+u_{5} & \\
\text { s.t. } & 2 u_{1}+u_{2} & \geq 3 \\
& 3 u_{1}+\quad u_{3} \quad & \geq 4 \\
& 4 u_{1}+\quad u_{4} & \geq 5 \\
& 4 u_{1}+\quad u_{5} & \geq 4 \\
& u_{i} \geq 0 \quad \forall i=1, \ldots, 5 . &
\end{aligned}
$$

(c) By Part(b), we can replace u_{2}, u_{3}, u_{4} by u_{1}. Notice that u_{1} must be lower than $\frac{5}{4}$ (u_{1} should be lower than $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}$ due to the replacement of u_{2}, u_{3}, u_{4}). The new dual LP becomes

$$
\begin{array}{cl}
\min & 12-u_{1}+u_{5} \\
\text { s.t. } & 4 u_{1}+u_{5} \geq 4 \\
& u_{1} \quad \leq \frac{5}{4} \\
& u_{i} \geq 0 \quad \forall i=1,5
\end{array}
$$

The feasible region and isoquant line are illustrated in Figure 1. It is clear that we should push the isoquant line until we stop at the extreme point $\left(\frac{5}{4}, 0\right)$, which is an optimal solution and we get objective value $10 \frac{3}{4}$.
(d) Yes. We get the same objective value in Part(a) and (c), and x^{*} and u^{*} are also primal and dual feasible, so x^{*} and u^{*} are primal and dual optimal due to the strong duality.

Figure 1: Graphical solution of the remaining dual LP in Problem 3
4. The branch-and-bound tree for solving this problem is depicted in Figure 2. The optimal solution is $(0,0,1,1)$ or $(0,1,0,1)$. The optimal objective value is 9 .

Figure 2: Branch-and-bound tree for Problem 4
5. (a) Let the parameters be

$$
w_{i}=\text { the weight of node } i, i=1, \ldots, 3,
$$

Let the decision variables be

$$
\begin{aligned}
& x_{i}=\left\{\begin{array}{ll}
1 & \text { if the node } i \text { is selected } \\
0 & \text { otherwise }
\end{array}, i=1, \ldots, 3 .\right. \\
& \min \quad \sum_{i=1}^{3} w_{i} x_{i} \\
& \text { s.t. } \quad x_{1}+x_{2} \geq 1 \\
& \\
& \quad x_{2}+x_{3} \geq 1 \\
& \\
& \quad x_{1}+x_{3} \geq 1 \\
& \\
& \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 3
\end{aligned}
$$

(b) The linear relaxation of original IP is

$$
\begin{array}{ll}
\min & \sum_{i=1}^{3} w_{i} x_{i} \\
\text { s.t. } & x_{1}+x_{2} \geq 1 \\
& x_{2}+x_{3} \geq 1 \\
& x_{1}+x_{3} \geq 1 \\
& x_{i} \in[0,1] \quad \forall i=1, \ldots, 3
\end{array}
$$

We want to minimize the total weight, and because w_{i} is given, we would try to minimize x_{i}. If $x_{i}>1$, it will definitely satisfy the constraint $x_{i}+x_{v} \geq 1$. Let $x_{i}^{\prime}=1$. Then the constraint becomes $\left(1+x_{v}\right) \geq 1$ and is always satisfied. Because minimizing x_{i} to 1 increases less cost, we always want to let $x_{i}=1$.
(c) Let x_{4}, x_{5}, x_{6} be the slack variables. The standard form of (p) is

$$
\begin{array}{ll}
\min & \sum_{i=1}^{3} w_{i} x_{i} \\
\text { s.t. } & x_{1}+x_{2}-x_{4}=1 \\
& x_{2}+x_{3}-x_{5}=1 \\
& x_{1}+x_{3}-x_{6}=1 \\
& x_{i} \in[0,1] \quad \forall i=1, \ldots, 6
\end{array}
$$

We can see that there exist some square submatrices whose determinant isn't 1 or -1 , so the coefficient matrix is not totally unimodular.

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 0 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 & 0 & -1
\end{array}\right]
$$

(d) The reduced costs are

$$
\begin{aligned}
& c_{N}^{-T}=c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T}=\left[\begin{array}{lll}
2 & 3 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right]-\left[\begin{array}{lll}
10 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 3 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 0 \\
2 & -1 & -1
\end{array}\right]-\left[\begin{array}{lll}
10 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
5 & -3 & -2
\end{array}\right]-\left[\begin{array}{lll}
10 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
-5 & -3 & -2
\end{array}\right]
\end{aligned}
$$

We can see that the reduced costs are all negative with the solution x^{*}. No variable should enter. The solution x^{*} is optimal.
(e) No, the proposition that total unimoudularity will gives a integer solution doesn't mean that having a integer solution implies the total unimodularity.
(f) If we assign $w_{1}=2, w_{2}=2, w_{3}=1$, then the LR-optimal solution is $x^{*}=(0.5,0.5,0.5)$. Because the coefficients are not integer, it's not IP-feasible.
(g) We get the feasible solution when we solve the first node by the branch-and-bound tree, so we don't need to draw the tree. The optimal solution is $x^{*}=(1,1,0)$. The optimal objective value is 5 .
6. (a) The model is

$$
\begin{array}{ll}
\min & \sum_{i \in V} w_{i} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \forall[i, j] \in E \\
& x_{i} \in\{0,1\} \quad \forall i \in V .
\end{array}
$$

(b) The linear relaxation of original IP is

$$
\begin{array}{ll}
\min & \sum_{i \in V} w_{i} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \geq 1 \quad \forall[i, j] \in E \\
& x_{i} \in[0,1] \quad \forall i \in V .
\end{array}
$$

The dual LP is

$$
\begin{array}{ll}
\max & \sum_{e \in E} Y_{e} \\
\text { s.t. } & \sum_{e:[u, i] \in E} Y_{e} \leq w_{i} \quad \forall i \in V \\
& Y_{e} \geq 0 \quad \forall e \in E
\end{array}
$$

(c) As the above, we can see that the number of primal LP's constraints is equal to the number of edges. On the other hand, the number of dual LP's constraints is equal to the number of nodes.
Let the number of constraints in primal LP denotes M and the number of variables denotes N. We know that when $M<N$, primal LP will be easier to solve; otherwise, the dual LP is easier to solve. Generally, the number of edges is larger than the number of nodes. As the result, the dual LP of the vertex cover problem is easier to solve.

