Operations Research, Spring 2015 Pre-lecture Problems for Lecture 6

Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:10am, April 9, 2015. Please submit a hard copy of your work in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 point) Find the dual for the following LP:

\[

\]

2. (0 point) Consider a primal LP

$$
\begin{aligned}
\max & 3 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 16 \\
& x_{2} \leq 8 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

(a) Find a primal optimal solution x^{*}.
(b) Formulate the dual LP.
(c) Solve the dual LP to get a dual optimal solution y^{*}. Show that $c^{\mathrm{T}} x^{*}=\left(y^{*}\right)^{\mathrm{T}} b$, where c and b are the primal and dual objective function.
3. (10 points) Consider the primal LP that you just solved in Problem 2.
(a) Find a primal optimal basis B. Verify that $A_{B}^{-1} b=x_{B}^{*}$, the basic variables of the optimal solution x^{*} you found in Problem 2a.
(b) Verify that $c_{B}^{\mathrm{T}} A_{B}^{-1}=y^{*}$, the dual optimal solution you found in Problem 2c.
(c) Find the shadow prices for the two primal constraints. ${ }^{1}$

[^0]
[^0]: ${ }^{1}$ If you are applying the correct concept, you may need no calculation for finding them. But maybe you would like to do a verification by calculating them by solving two modified primal LPs?

