Operations Research, Spring 2015
 Pre-lecture Problems for Lecture 7

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:10am, April 16, 2015. Please submit a hard copy of your work in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 point) In this problem, we will use the branch-and-bound algorithm to solve the following IP

$$
\begin{aligned}
\max & 3 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 16 \\
& x_{2} \leq 7.5 \\
& x_{i} \in \mathrm{Z}_{+} \quad \forall i=1,2
\end{aligned}
$$

(a) Solve the linear relaxation of the given IP. Show that both x_{1} and x_{2} are fractional in the optimal solution.
(b) Branch on x_{1} and continue until the IP is fully solved. Depict the branching tree.
(c) Instead of branch on x_{1}, branch on x_{2} and continue until the IP is fully solved. Depict the branching tree. Compare the result with branching on x_{1}.
2. (0 point) Consider the following integer program

$$
\begin{aligned}
\max & x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2}-6 \leq M_{1} z \\
& x_{1}+2 x_{2}-8 \leq M_{2}(1-z) \\
& x_{1} \leq 10 \\
& x_{2} \leq 10 \\
& x_{i} \geq 0 \quad \forall i=1,2 \\
& z \in\{0,1\},
\end{aligned}
$$

where M_{1} and M_{2} are parameters and x_{1}, x_{2}, and z are variables. The binary variable z is to select at least one constraint to be satisfied.
(a) What values of M_{1} and M_{2} can enable z to do the "at-least-one" selection?
(b) Depict the feasible region on the $\left(x_{1}, x_{2}\right)$ plane. Then graphically solve the IP.
3. (10 points) Use the branch-and-bound algorithm to solve the IP

$$
\begin{array}{rrl}
\max & 8 x_{1} & +5 x_{2} \\
\text { s.t. } & x_{1} & +x_{2} \leq 6 \\
& 9 x_{1} & +5 x_{2} \leq 36 \\
& x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2 .
\end{array}
$$

