Operations Research

Applications of Integer Programming

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Road map

- Facility location problems.
- Machine scheduling problems.
- Vehicle routing problems.

Facility location problems

- One typical managerial decision is "where to build my facility?"
- Where to open convenience stores?
- Where to build warehouses or distribution centers?
- Where to build factories?
- Where to build power stations, fire stations, or police stations?
- A similar question is "where to locate a scare resource?"
- Where to put a limited number of fire engines or ambulances?
- Where to put a limited number of police officers?
- Where to put a limited number of ice cream machines?
- These problems are facility location problems.
- In this lecture, we focus on discrete facility location problems: We choose a subset of locations from a set of finite locations.

Facility location problems

- In general, there are some demand nodes and some potential locations.
- We build facilities at locations to serve demands.
- E.g., build distribution centers to ship to retail stores.
- E.g., build fire stations to cover cities, towns, and villages.
- Facility location problems are typically categorized based on their objective functions.
- In this lecture, we introduce three types of facility location problems:
- Set covering problems: Build a minimum number of facilities to cover all demands.
- Maximum covering problems: Build a given number of facilities to cover as many demands as possible.
- Fixed charge location problems: Finding a balance between benefit of covering demands and cost of building facilities.

Set covering problems

- Consider a set of demands I and a set of locations J.
- The distance (or traveling time) between demand i and location j is $d_{i j}>0, i \in I, j \in J$.
- A service level $s>0$ is given: Demand i is said to be "covered" by location j if $d_{i j}<s$.
- Question: How to allocate as few facilities as possible to cover all demands?

Set covering problems

- Let's define the following parameter: $a_{i j}=1$ if $d_{i j}<s$ or 0 otherwise, $i \in I, j \in J$.
- Let's define the following variables: $x_{j}=1$ if a facility is built at location $j \in J$ or 0 otherwise.
- The complete formulation:

$$
\begin{array}{ll}
\min & \sum_{j \in J} x_{j} \\
\text { s.t. } & \sum_{j \in J} a_{i j} x_{j} \geq 1 \quad \forall i \in I \\
& x_{j} \in\{0,1\} \quad \forall j \in J .
\end{array}
$$

- The weighted version: $\min \sum_{j \in J} w_{j} x_{j}$.

Maximum covering problems

- Consider a set of demands I and a set of locations J.
- The distances $d_{i j}$, service level s, and the covering coefficient $a_{i j}$ are also given.
- We are restricted to build at most $p \in \mathbb{N}$ facilities.
- Question: How to allocate at most p facilities to cover as many demands as possible?

Maximum covering problems

- Still let $x_{j}=1$ if a facility is built at location $j \in J$ or 0 otherwise.
- Also let $y_{i}=1$ if demand $i \in I$ is covered by any facility or 0 otherwise.
- The complete formulation:

$$
\begin{array}{ll}
\max & \sum_{i \in I} y_{i} \\
\text { s.t. } & \sum_{j \in J} a_{i j} x_{j} \geq y_{i} \quad \forall i \in I \\
& \sum_{j \in J} x_{j} \leq p \quad \forall j \in J \\
& x_{j} \in\{0,1\} \quad \forall j \in J \\
& y_{i} \in\{0,1\} \quad \forall i \in I .
\end{array}
$$

- The weighted version: $\max \sum_{i \in I} w_{i} y_{i}$.

Fixed charge location problems

- Consider a set of demands I and a set of locations J.
- At demand i, the demand size is $h_{i}>0$.
- The unit shipping cost from location j to demand i is $d_{i j}>0$.
- The fixed construction cost at location j is $f_{j}>0$.
- Question: How to allocate some facilities to minimize the total shipping and construction costs?

Fixed charge location problems

- We still need $x_{j} \mathrm{~s}: x_{j}=1$ if a facility is built at location $j \in J$ or 0 otherwise.
- We now need $y_{i j}$ s: $y_{i j}=1$ if demand $i \in I$ is served by facility at location $j \in J$ or 0 otherwise.
- The complete formulation:

$$
\begin{array}{ll}
\min & \sum_{i \in I} \sum_{j \in J} h_{i} d_{i j} y_{i j}+\sum_{j \in J} f_{j} x_{j} \\
\text { s.t. } & y_{i j} \leq x_{j} \quad \forall i \in I, j \in J \\
& \sum_{j \in J} y_{i j}=1 \quad \forall i \in I \\
& x_{j} \in\{0,1\} \quad \forall j \in J \\
& y_{i} \in\{0,1\} \quad \forall i \in I .
\end{array}
$$

Fixed charge location problems

- The previous model is the uncapacitated version.
- A facility can serve any amount of demand.
- If facility at location j has a limited capacity $K_{j}>0$, we may add the capacity constraint

$$
\sum_{i \in I} h_{i} y_{i j} \leq K_{j} \quad \forall j \in J
$$

- The capacitated version is usually called the capacitated facility location problem (abbreviated as CFL). The uncapacitated one is abbreviated as UFL.

Remarks

- When to use set covering?
- When we are required to take care of (almost) everyone.
- E.g., fire stations and police stations.
- When to use maximum covering?
- When budgets are limited.
- E.g., cellular data networks.
- When to use fixed charge location?
- When service costs depends on distances.
- E.g., distribution centers.
- All the three models are NP-hard.
- For large instances, it really takes time to obtain an optimal solution.
- Many researchers look for effective heuristics for these problems.

Road map

- Facility location problems.
- Machine scheduling problems.
- Vehicle routing problems.

Machine scheduling problems

- In many cases, jobs/tasks must be assigned to machines.
- As an example, consider a factory producing one product for n customers.
- Serial production: Only one job can be processed at one time.
- Each job has its due date.
- How to schedule the n jobs to minimize the total number of delayed jobs?
- In this example, scheduling is nothing but sequencing.
- Splitting jobs is not helpful.
- There are n ! ways to sequence the n jobs.
- Is there a polynomial-time algorithm?
- The problems of scheduling jobs to machines are machine scheduling problems.

Machine scheduling problems

- Machine scheduling problems can be categorized in multiple ways:
- Production mode:
- Single machine serial production.
- Multiple parallel machines.
- Flow shop problems.
- Job shop problems.
- Job splitting:
- Non-preemptive problems.
- Preemptive problems.
- Performance measurement:
- Makespan (the time that all jobs are completed).
- (Weighted) total completion time.
- (Weighted) number of delayed jobs.
- (Weighted) total lateness.
- (Weighted) total tardiness.
- And more.

Minimizing total tardiness on a single machine

- Consider scheduling n jobs on a single machine.
- Job $j \in J=\{1,2, \ldots, n\}$ has processing time p_{j} and due time d_{j}.
- Different schedules give these jobs different completion times. The completion time of job j is denoted as C_{j}.
- For job j, its tardiness is ${ }^{1}$

$$
T_{j}=\max \left\{C_{j}-d_{j}, 0\right\} .
$$

- There is only one machine, which can process only one job at a time.
- How to schedule all the jobs to minimize the total tardiness $\sum_{j \in J} T_{j}$?
- While many researchers study specific properties and algorithms for specific problems, we will only try to formulate the problem as an integer program.

[^0]
Minimizing total tardiness on a single machine

- Let's use C_{j} to be our decision variables.
- Suppose we schedule jobs $1,2, \ldots$, and n in this order, we will have $C_{1}=p_{1}, C_{2}=p_{1}+p_{2}, \ldots$, and $C_{n}=\sum_{i=1}^{n} p_{i}$.
- A Gantt chart is helpful to illustrate a schedule.
- Obviously, splitting jobs does not help for this problem. (Why?)
- Because the machine can start job 2 only after job 1 is completed, we have $C_{2} \geq C_{1}+p_{2}$ as a constraint. But what if job 2 should be scheduled before job 1?

Minimizing total tardiness on a single machine

- In a feasible schedule, job i is either before or after job j, for all $j \neq i$.
- Therefore, we need to satisfy at least one of the following two constraints:

$$
C_{j} \geq C_{i}+p_{j} \quad \text { and } \quad C_{i} \geq C_{j}+p_{i} .
$$

- Let $z_{i j}=1$ if job j is before job i or 0 otherwise, $i \in J, j \in J, i<j$.
- The constraints we need:

$$
\begin{aligned}
& C_{i}+p_{j}-C_{j} \leq M z_{i j} \\
& C_{j}+p_{i}-C_{i} \leq M\left(1-z_{i j}\right)
\end{aligned}
$$

- What value of M works?
- How about $M=\sum_{j \in J} p_{j}$?

Minimizing total tardiness on a single machine

- It remains to linearize the objective function

$$
\min \sum_{j \in J} \max \left\{C_{j}-d_{j}, 0\right\}
$$

- The complete formulation:

$$
\begin{array}{lll}
\min & \sum_{j \in J} T_{j} & \\
\text { s.t. } & T_{j} \geq C_{j}-d_{j} & \forall j \in J \\
& C_{i}+p_{j}-C_{j} \leq M z_{i j} & \forall i \in J, j \in J, i<j \\
& C_{j}+p_{i}-C_{i} \leq M\left(1-z_{i j}\right) & \forall i \in J, j \in J, i<j \\
& T_{j} \geq 0, C_{j} \geq 0 & \forall j \in J \\
& z_{i j} \in\{0,1\} & \forall i \in J, j \in J, i<j .
\end{array}
$$

Minimizing makespan on parallel machines

- Consider scheduling n jobs on m parallel machines.
- Job $j \in J=\{1,2, \ldots, n\}$ has processing time p_{j}.
- The capacity of machine $i \in I=\{1,2, \ldots, m\}$ is unlimited.
- A job can be processed at any machine. However, it can be processed only on one machine.
- Different schedules give these jobs different completion times $C_{j} \mathrm{~s}$.
- The makespan of a schedule is $\max _{j \in J} C_{j}$.
- How may we minimize the makespan?

Minimizing makespan on parallel machines

- As long as some jobs are assigned to a machine, the sequence on that machine does not matter.
- The problem of minimizing makespan is just to assign jobs to machines.
- Let $x_{i j}=1$ if job $j \in J$ is assigned to machine $i \in I$ or 0 otherwise.
- On machine $i \in I$, the last job is completed at

$$
\sum_{j \in J} p_{j} x_{i j}
$$

- The objective is to

$$
\min \max _{i \in I}\left\{\sum_{j \in J} p_{j} x_{i j}\right\}
$$

How to linearize it?

Minimizing makespan on parallel machines

- The complete formulation is

$$
\begin{array}{lll}
\min & M & \\
\text { s.t. } & M \geq \sum_{j \in J} p_{j} x_{i j} & \forall i \in I \\
& \sum_{i \in I} x_{i j}=1 & \forall j \in J \\
& x_{i j} \in\{0,1\} & \forall i \in I, j \in J .
\end{array}
$$

- Sometimes people want to maximize the completion time of the least-loaded machine (for, e.g., fairness):

$$
\begin{array}{lll}
\max & M \\
\text { s.t. } & M \leq \sum_{j \in J} p_{j} x_{i j} & \forall i \in I \\
& x_{i j} \in\{0,1\} \quad \forall i \in I, j \in J .
\end{array}
$$

Road map

- Facility location problems.
- Machine scheduling problems.
- Vehicle routing problems.

Vehicle routing problems

- In many cases, we need to deliver/collect items to/from customers in the most efficient way.
- E.g., consider a post officer who needs to deliver to four addresses.
- The shortest path between any pair of two addresses can be obtained.
- This is a routing problem: To choose a route starting from the office, passing each address exactly once, and then returning to the office.
- This is a sequencing problem; in total there are $4!=24$ feasible routes.
- Which route minimizes the total distance (or travel time)?

Vehicle routing problems

- The problem described above is the famous traveling salesperson problem.
- It assumes that the truck has ample capacity.
- Consider the truck towing bicycles in NTU. It must start at the car pound, pass several locations in NTU, and then return to the origin.
- However, the truck capacity is quite limited (because too many people violate the parking regulation).
- The driver needs to find multiple routes to cover all the locations.
- The traveling salesperson problem (TSP) is a special case of vehicle routing problems.

Traveling salesperson problem

- How to formulate the TSP into an integer program?
- Let's consider a directed complete network $G=(V, E)$.
- There are n nodes and $n(n-1)$ arcs.
- The arc weight for $\operatorname{arc}(i, j)$ is $d_{i j}>0$.
- We select a few arcs in E to form a tour.
- To form a tour, we need to select n arcs.
- These n arcs should form a cycle passing all nodes.
- Let $x_{i j}=1$ if $\operatorname{arc}(i, j) \in E$ is selected or 0 otherwise.
- The objective:

$$
\min \sum_{(i, j) \in E} d_{i j} x_{i j}
$$

- How to ensure the routing requirement?
- Is $\sum_{(i, j) \in E} d_{i j} x_{i j}=n$ enough?

Traveling salesperson problem

- For node $k \in V$:
- We must select exactly one incoming arc:

$$
\sum_{i \in V, i \neq k} x_{i k}=1
$$

- We must select exactly one outgoing arc:

$$
\sum_{j \in V, j \neq k} x_{k j}=1
$$

- Now each node is on a cycle.
- However, these are not enough to prevent subtours.

Eliminating subtours: alternative 1

- There are at least two ways to eliminate subtours.
- For each subset of nodes with at least two nodes, we limit the maximum number of arcs selected:

$$
\sum_{i \in S, j \in S, i \neq j} x_{i j} \leq|S|-1 \quad \forall S \subsetneq V,|S| \geq 2
$$

- When we have n nodes, we have $2^{n}-n-1$ constraints.

Eliminating subtours: alternative 2

- Let u_{i} s represent the order of passing nodes. More precisely, $u_{i}=k$ if node i is the k th node to be passed in a tour.
- We add the following constraints:

$$
\begin{aligned}
u_{1}=1 & \\
2 \leq u_{i} \leq n & \forall i \in V \backslash\{1\} \\
u_{i}-u_{j}+1 \leq(n-1)\left(1-x_{i j}\right) & \forall(i, j) \in E, i \neq 1, j \neq 1 .
\end{aligned}
$$

- If $x_{i j}=0$, there is no constraint for u_{i} and u_{j}; otherwise, u_{j} must be larger than u_{i} by at least 1 .
- If a tour does not contain node 1 , the last constraint pushes those u_{i} s to infinity and violates constraint 2 .
- Note that only node 1 is not restricted by these constraints!
- When we have n nodes, we have n additional variables and $n+(n-1)(n-2)$ constraints.

The complete formulation

- The complete formulation is

$$
\begin{array}{lll}
\min & \sum_{(i, j) \in E} d_{i j} x_{i j} \\
\text { s.t. } & \sum_{i \in V, i \neq k} x_{i k}=1 \quad \forall k \in V \\
& \sum_{j \in V, j \neq k} x_{k j}=1 \quad \forall k \in V \\
& x_{i j} \in\{0,1\} \quad \forall(i, j) \in E .
\end{array}
$$

with either alternative 1 or alternative 2 .

- Which alternative is better?

[^0]: ${ }^{1}$ Its lateness is $L_{j}=C_{j}-d_{j}$, which may be negative.

