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Road map

I Multi-variate convex analysis.

I Solving constrained NLPs.

I Applications.
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Convex analysis

I We have learned how to solve single-variate NLPs.
I An optimal solution either satisfies the FOC or is a boundary point.
I If the NLP is a CP, a feasible point satisfying the FOC is optimal.

I The above facts actually apply to multi-variate NLPs.

I We need to be able to determine whether a multi-variate function is
convex, concave, or neither.

I We will still focus on twice differentiable functions.
I Let’s extend the notion of derivatives first.
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Partial derivatives

I For a function f : Rn → R, its ith partial derivative is
∂f(x)

∂xi
.

I E.g., the partial derivatives for

f(x1, x2, x3) = x21 + x2x3 + x33

are
∂f(x)

∂x1
= 2x1,

∂f(x)

∂x2
= x3 and

∂f(x)

∂x3
= x2 + 3x23.

I It also has second-order partial derivatives:
I For the same f , we have

∂2f(x)

∂x21
= 2,

∂2f(x)

∂x22
= 0,

∂2f(x)

∂x23
= 6x3,

∂2f(x)

∂x1x2
=
∂2f(x)

∂x2x1
= 0,

∂2f(x)

∂x1x3
=
∂2f(x)

∂x3x1
= 0,

∂2f(x)

∂x2x3
=
∂2f(x)

∂x3x2
= 1.
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Symmetry of second-order derivatives

I For a second-order derivatives, we have the following fact:

Proposition 1

For a twice differentiable function f : Rn → R, if its second-order
derivatives are all continuous, then

∂2f(x)

∂xixj
=
∂2f(x)

∂xjxi

for all i = 1, ..., n, j = 1, ..., n.

I For all functions we will see in this course, the above property holds.
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Multi-variate convex functions

I For f : R→ R, f is convex if and only if f ′′(x) ≥ 0 for all x.

I For f : Rn → R, is it true that f is convex if and only if ∂2f(x)
∂x2

i
≥ 0 for

all xi, i = 1, ..., n?

I Consider f(x1, x2) = x21 + 4x1x2 + x22 + x1 + x2. Is it convex at (0, 0)?
I We have

∂f(0, 0)

∂x1
= (2x1 + 4x2 + 1)

∣∣∣∣
(x1,x2)=(0,0)

= 1 and
∂2f(0, 0)

∂x21
= 2 > 0.

I We also have

∂f(0, 0)

∂x2
= (2x2 + 4x1 + 1)

∣∣∣∣
(x1,x2)=(0,0)

= 1 and
∂2f(0, 0)

∂x21
= 2 > 0

I Is f convex at (0, 0)?
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Multi-variate convex functions

I This is necessary but
insufficient!

I ∂2

∂x2
1
f(0, 0) ≥ 0 and

∂2

∂x2
2
f(0, 0) ≥ 0 only imply

that f is convex along the
two axes!
I Along (1,−1), e.g., f is

not convex.

I We need to test whether f
is convex in all directions.

f(x1, x2) = x21 + 4x1x2 + x22 + x1 + x2.

Nonlinear Programming (Part 2) 7 / 38 Ling-Chieh Kung (NTU IM)



Multi-variate convex analysis Solving constrained NLPs Applications

Gradients and Hessians

I For a function f : Rn → R, collecting its first- and second-order partial
derivatives generates its gradient and Hessian:

Definition 1 (Gradients and Hessians)

For a multi-variate twice differentiable function f : Rn → R, its
gradient and Hessian are

Of(x) =


∂f(x)
∂x1

...
∂f(x)
∂xn

 and O2f(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · ·
∂2f(x)
∂x2∂x1

. . .

... ∂2f(x)
∂x2

n

 .

I In this course, all Hessians are symmetric.
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Example

I For f(x1, x2, x3) = x21 + x2x3 + x33, the gradient is

Of(x) =


∂f(x)
∂x1

∂f(x)
∂x2

∂f(x)
∂x3

 =


2x1

x3

x2 + 3x23

 .
I The Hessian is

O2f(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

∂2f(x)
∂x1∂x3

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

∂2f(x)
∂x2∂x3

∂2f(x)
∂x3∂x1

∂2f(x)
∂x3∂x2

∂2f(x)
∂x2

3

 =


2 0 0

0 0 1

0 1 6x3

 .
I What are Of(3, 2, 1) and O2f(3, 2, 1)?
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Convexity of twice differentiable functions
I Recall the following theorem for single-variate functions:

Proposition 2

For a single-variate twice differentiable function f(x):
I f is convex in [a, b] if f ′′(x) ≥ 0 for all x ∈ [a, b].
I x̄ is an interior local min only if f ′(x̄) = 0.
I If f is convex, x∗ is a global min if and only if f ′(x∗) = 0.

I We have an analogous theorem for multi-variate functions:

Proposition 3

For a multi-variate twice differentiable function f(x):
I f is convex in F if O2f(x) is positive semi-definite for all x ∈ F .
I x̄ is an interior local min only if Of(x) = 0.
I If f is convex, x∗ is a global min if and only if Of(x∗) = 0.

I What is positive semi-definiteness (PSD)?
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Positive semi-definite matrices

I Positive semi-definite Hessians in Rn are generalizations of
nonnegative second-order derivatives in R.

Definition 2 (Positive semi-definite matrices)

A symmetric matrix A is positive semi-definite if xTAx ≥ 0 for all
x ∈ Rn.

I Example 1: For A =

[
2 1
1 2

]
, we have

xTAx = 2x21 + 2x1x2 + 2x22 = (x1 + x2)2 + x21 + x22 ≥ 0 ∀x ∈ R2.

I Example 2: For A =

[
1 2
2 1

]
, we have xTAx = x21 + 4x1x2 + x22,

which is negative when x1 = 1 and x2 = −1.
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Positive semi-definite matrices
I Given a function f , when is its Hessian O2f PSD?

Proposition 4

For a symmetric matrix A, the following statements are equivalent:

I A is positive semi-definite.
I A’s eigenvalues are all nonnegative.
I A’s leading principal minors are all nonnegative.

I A’s eigenvalues λ and eigenvectors x satisfy Ax = λx.
I A’s kth leading principal minors is the determinant of the upper-left k by
k submatrix.

I Given a function f , we will:
I Find its Hessian.
I Find its eigenvalues or leading principal minors.
I Determine over what region the Hessian is PSD.
I Over that region, the function is convex.
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An example

I Consider the NLP

min
x∈R2

f(x1, x2),

where

f(x1, x2) = x21 + x22

+ x1x2 − 2x1 − 4x2.

I Its gradient and Hessian are

Of(x1, x2) =

[
2x1 + x2 − 2
x1 + 2x2 − 4

]
and O2f(x1, x2) =

[
2 1
1 2

]
.
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An example

f(x1, x2) = x2
1 + x2

2 + x1x2 − 2x1 − 4x2.

I To find the eigenvalues of O2f(x1, x2), recall that

Ax = λx ⇔ (A− λI)x = 0 ⇔ det(A− λI) = 0.

I For our O2f(x1, x2), we have∣∣∣∣ 2− λ 1
1 2− λ

∣∣∣∣ = 0 ⇔ 3− 4λ+ λ2 = 0 ⇔ λ = 1 or 3.

I Or by leading principal minors:∣∣ 2
∣∣ = 2 and

∣∣∣∣ 2 1
1 2

∣∣∣∣ = 3.

I So O2f(x1, x2) is PSD and thus minx∈R2 f(x1, x2) is a CP. The FOC
requires 2x∗1 + x∗2 − 2 = 0 and x∗1 + 2x∗2 − 4 = 0, i.e., (x∗1, x

∗
2) = (0, 2).

Nonlinear Programming (Part 2) 14 / 38 Ling-Chieh Kung (NTU IM)



Multi-variate convex analysis Solving constrained NLPs Applications

Another example

I Consider f(x1, x2) = x31 + 4x1x2 + x22 + x1 + x2. When is it convex?

I Its Hessian is [
6x1 4
4 1

]
.

I When is the Hessian positive semi-definite?
I We need the first leading principal minor 6x1 ≥ 0.
I We need the second leading principal minor 6x1 − 16 ≥ 0.

I Therefore, the function is convex if and only if x1 ≥ 8
3 .

Nonlinear Programming (Part 2) 15 / 38 Ling-Chieh Kung (NTU IM)



Multi-variate convex analysis Solving constrained NLPs Applications

Road map

I Multi-variate convex analysis.

I Solving constrained NLPs.

I Applications.
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Solving constrained NLPs

I For unconstrained NLPs, we have enough tools:
I We may determine whether the objective function is convex.
I We may use the FOC to find all local minima.

I How about constrained NLPs?

I We may always try the following strategy:
I Ignore all the constraints.
I Find a global minimum.
I If it is feasible, it is optimal.

I It an unconstrained global minimum is infeasible, what should we do?
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Solving single-variate constrained NLPs

I Let’s solve

min
x≥0

f(x) = x2 + 2x− 3.

I We have f ′(x) = 2x+ 2 and f ′′(x) = 2.

I f is convex and the solution satisfying the
FOC is x̄ = −1. However, it is infeasible!

I For a single-variate NLP, the feasible
solution that is closest to the
FOC-solution is optimal.

f(x) = x2 + 2x− 3.
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Solving multi-variate constrained NLPs

I Let’s solve

min
x∈R2

f(x) = (x1 − 2)2 + 4(x2 − 1)2

s.t. x1 + 2x2 ≤ 2.

I For this CP, the FOC-solution x̄ = (2, 1)
is infeasible.

I The closest feasible point is not optimal!

I We need a way to deal with constraints.
f(x) = x2 + 2x− 3.
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Relaxation with rewards

I Recall our strategy: First ignore all constraints, and then ...

I Ignoring all constraints is “too much”!
I An infeasible solution should be bad.
I But this cannot be revealed in the relaxed NLP.
I While we allow one to violate constraints, we encourage feasibility.

I Consider an original NLP

max
x∈Rn

f(x)

s.t. gi(x) ≤ bi ∀i = 1, ...,m.

I How to allow one to violate constraints but encourage feasibility?
I For constraint i, let’s associate a unit reward λi ≥ 0 to it.
I If a solution x̄ satisfies constraint i (so bi − gi(x̄) ≥ 0), “reward” the

solution by λi[bi − gi(x̄)]. Let’s add this into the relaxed NLP.
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Lagrangian relaxation

I For an original NLP

z∗ = max
x∈Rn

{
f(x)

∣∣∣gi(x) ≤ bi ∀i = 1, ...,m
}
, (1)

we relax the constraints and add rewards for feasibility into the
objective function:

zL(λ) = max
x∈Rn

f(x) +

m∑
i=1

λi

[
bi − gi(x)

]
. (2)

I Let’s assume that λis are given for a while.
I To help solve the NLP, we should have λi ≥ 0. This rewards feasibility

and penalize infeasibility.

I L(x|λ) = f(x) +
∑m
i=1 λi[bi − gi(x)] is the Lagrangian given λ.

I λis are the Lagrange multipliers.
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An example

I Consider the following example

z∗ = max x1 + x2

s.t. x21 + x22 ≤ 8

x2 ≤ 6.

I For this original NLP, the optimal
solution is x∗ = (2, 2). z∗ = 4.

I What are the Lagrangian and
Lagrangian relaxation?
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An example
I The original NLP is z∗ = max

x∈R2

{
x1 + x2

∣∣∣x21 + x22 ≤ 8, x2 ≤ 6
}

.

I Given Lagrange multipliers λ = (λ1, λ2) ≥ 0, the Lagrangian is

L(x|λ) = x1 + x2 + λ1(8− x21 − x22) + λ2(6− x2).

I The Lagrangian relaxation is

zL(λ) = max
x∈R2

L(x|λ).

I Some Lagrange multipliers:
I zL(0, 1) = max

x∈R2
x1 + 6 =∞.

I zL(1, 2) = max
x∈R2

−x21 + x1 − x22 − x2 + 20 = 20.5.

I zL(1, 0) = max
x∈R2

−x21 + x1 − x22 − x2 + 8 = 8.5.

I All the zL(λ) above is greater than z∗ = 4! Will this always be true?

Nonlinear Programming (Part 2) 23 / 38 Ling-Chieh Kung (NTU IM)



Multi-variate convex analysis Solving constrained NLPs Applications

Lagrangian relaxation provides a bound
I The Lagrangian relaxation provides a bound for the original NLP.

Proposition 5

For the two NLPs defined in (1) and (2), zL(λ) ≥ z∗ for all λ ≥ 0.

Proof. We have

z∗ = max
x∈Rn

{
f(x)

∣∣∣∣gi(x) ≤ bi ∀i = 1, ...,m

}
≤ max
x∈Rn

{
f(x) +

m∑
i=1

λi[bi − gi(x)]

∣∣∣∣gi(x) ≤ bi ∀i = 1, ...,m

}

≤ max
x∈Rn

{
f(x) +

m∑
i=1

λi[bi − gi(x)]

}
= zL(λ),

where the first inequality relies on λ ≥ 0.
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Lagrangian duality

I Given a constrained original NLP, solving its Lagrangian relaxation
gives us some information.

I A similar situation happened to LP!
I Any feasible dual solution gives a bound to the primal LP.
I We look for an dual optimal solution that gives a tight bound.

I Given that zL(λ) ≥ z∗ for all λ ≥ 0, it is natural to define

min
λ≥0

zL(λ)

as the Lagrangian dual program.
I Lagrange multipliers are dual variables in NLP.
I LP duality is a special case of Lagrangian duality: The Lagrangian

relaxation of an LP is the dual LP.

I Lagrangian duality possesses several properties (beyond the scope).
I Just intuitively treat λi as the dual variable for constraint i.
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The KKT condition

I Now we present the most useful optimality condition for general NLPs:

Proposition 6 (KKT condition)

For a “regular” NLP

max
x∈Rn

f(x)

s.t. gi(x) ≤ bi ∀i = 1, ...,m.

if x̄ is a local max, then there exists λ ∈ Rm such that
I gi(x̄) ≤ bi for all i = 1, ...,m,
I λ ≥ 0 and Of(x̄) =

∑m
i=1 λiOgi(x̄), and

I λi[bi − gi(x̄)] = 0 for all i = 1, ...,m.

I All NLPs in this course (and most in the world) are “regular”.
I The condition is necessary for general NLPs but also sufficient for CPs.
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The KKT condition

I There are three conditions for x̄ to be a local maximum.

I Primal feasibility: gi(x̄) ≤ bi for all i = 1, ...,m.
I It must be feasible.

I Dual feasibility: λ ≥ 0 and Of(x̄) =
∑m
i=1 λiOgi(x̄).

I The equality is the FOC for the Lagrangian L(x̄|λ):

O

{
f(x) +

m∑
i=1

λi[bi − gi(x)]

}
= 0 ⇔ Of(x̄)−

m∑
i=1

λiOgi(x̄) = 0.

I Complementary slackness: λi[bi − gi(x̄)] = 0 for all i = 1, ...,m.
I Dual variable × primal slack = 0.
I If a constraint is nonbinding, the Lagrange multiplier is 0.

I Let’s visualize the KKT condition.
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Visualizing the KKT condition

I Consider

max x1 − x2
s.t. x21 + x22 ≤ 4

− x21 − (x2 + 2)2 ≤ −4.

I Graphically, x∗ = (
√

3, 1) is
optimal.

I What happens to Of , Og1, and
Og2 at x∗?
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Visualizing the KKT condition

max f(x) = x1 − x2
s.t. g1(x) = x21 + x22 ≤ 4

g2(x) = −x21 − (x2 + 2)2 ≤ −4.

I We have Of(x) = (1,−1),
Og1(x) = (2x1, 2x2), and
Og2(x) = (−2x1,−2(x2 + 2)),

I Therefore, Of(x∗) = (1,−1),
Og1(x∗) = (2

√
3,−2), and

Og2(x∗) = (−2
√

3,−2).

I The existence of λ ≥ 0 such that Of(x∗) = λ1Og1(x∗) + λ2Og2(x∗)
simply means that Of is “in between” Og1 and Og2 at x∗.
I Otherwise there is a feasible improving direction.
I Complementary slackness λi[bi − gi(x∗)] says that only constraints

binding at x∗ matter.
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Applying the KKT condition

max f(x) = x1 − x2
s.t. g1(x) = x21 + x22 ≤ 4

g2(x) = −x21 − (x2 + 2)2 ≤ −4.

I The Lagrangian is

L(x|λ) = x1 − x2 + λ1(4− x21 − x22) + λ2(−4 + x21 + (x2 + 2)2).

I ∂L(x|λ)
∂x1

= 1− 2(λ1 − λ2)x1 and ∂L(x|λ)
∂x2

= −1− 2(λ1 − λ2)x2 + 4λ2.
I A solution x̄ is a local maximum only if there exists λ such that

x21 + x22 ≤ 4,−x21 − (x2 + 2)2 ≤ −4

λ1 ≥ 0, λ2 ≥ 0

1− 2(λ1 − λ2)x1 = 0,−1− 2(λ1 − λ2)x2 + 4λ2 = 0

λ1(4− x21 − x22) = 0, λ2(−4 + x21 + (x2 + 2)2) = 0.
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The KKT condition for analysis

I In general, if there are n variables and m constraints.
I There are n primal variables (x) and m dual variables (λ).
I There are n equalities for dual feasibility.
I There are m equalities for complementary slackness.

I As those equalities are nonlinear, there may be multiple solutions
satisfying those equalities.
I Those inequalities are then used to eliminate some solutions.

I If we have all local maxima, we compare them for a global maximum.
I Nonlinear equations are hard to solve (even numerically).
I Too time consuming in general.

I Nevertheless, we will see that the KKT condition is useful for
analyzing many problems in business and economics.
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Multi-product EOQ problem

I Recall that we have solved the EOQ problem

min
q≥0

hq

2
+
KD

q
,

where h is the unit holding cost per year, K is the ordering cost per

order, and D is the annual demand. The EOQ is q∗ =
√

2KD
h .

I What if we procure two products? We solve

min
q1≥0,q2≥0

h1q1
2

+
K1D1

q1
+
h2q2

2
+
K2D2

q2
.

The problem is separable; the optimal quantities are the two EOQs.
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Multi-product EOQ problem

I What if we have only a limited space for these two products?

I We solve

min
q1≥0,q2≥0

h1q1
2

+
K1D1

q1
+
h2q2

2
+
K2D2

q2

s.t. v1q1 + v2q2 ≤W,

where W is the total space and vi is the volume of product i.

I Assumptions:
I We assume that products can be “in any shape”.
I This constraint can also be modeling budgets or something else.
I We do not try to “synchronize” the procurement processes (so we assume

the orders for the two products may arrive at the same time).

I How to solve this problem?

I To simplify the derivation, assume that v1 = v2 = 1 and h1 = h2 = h.
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Convexity of the problem

I Our (simplified) two-product EOQ problem

min
q1≥0,q2≥0

hq1
2

+
K1D1

q1
+
hq2
2

+
K2D2

q2

s.t. q1 + q2 ≤W,

is a CP:
I The objective function is convex; the Hessian matrix

2K1D1

q31
0

0
2K2D2

q32


is positive semi-definite.

I The feasible region is convex.
I A local minimum is a global minimum.
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The FOC for the Lagrangian
I The Lagrangian is

L(q|λ) =
hq1
2

+
K1D1

q1
+
hq2
2

+
K2D2

q2
+ λ(W − q1 − q2).

I The FOC for the Lagrangian is

∂

∂q1
L(q|λ) =

h

2
− K1D1

q21
− λ = 0 and

∂

∂q2
L(q|λ) =

h

2
− K2D2

q22
− λ = 0.

Note that this must be satisfied by any optimal solution!

I Therefore, we have

K1D1

q21
=
K2D2

q22
⇔ q1

q2
=

√
K1D1

K2D2
.
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Solving the multi-product EOQ problem
I Now we are ready to solve our two-product EOQ problem

min
q1≥0,q2≥0

{
hq1
2

+
K1D1

q1
+
hq2
2

+
K2D2

q2

∣∣∣∣q1 + q2 ≤W
}
.

I If the unconstrained optimal solution (q̄1, q̄2) =
(√

2K1D1

h ,
√

2K2D2

h

)
satisfies q̄1 + q̄2 ≤W , it is optimal.

I Otherwise, the capacity constraint must be binding. The solution to
the two equalities

q1 + q2 = W and
q1
q2

=

√
K1D1

K2D2

is optimal; i.e., (q̃1, q̃2) =

(
W

1 +
√

K2D2

K1D1

,
W

1 +
√

K1D1

K2D2

)
is optimal.
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Solving the multi-product EOQ problem
I Collectively, the optimal solution is

(q∗1 , q
∗
2) =



(√
2K1D1

h
,
√

2K2D2
h

)
if
√

2K1D1
h

+
√

2K2D2
h

≤ W(
W

1 +
√

K2D2
K1D1

,
W

1 +
√

K1D1
K2D2

)
otherwise.
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