MBA 8023: Optimization The Simplex Method

Ling-Chieh Kung
Department of Information Management
National Taiwan University

December 11, 2013

Introduction

- Last time we have shown that "if there is an optimal solution, there is an extreme point optimal solution."
- Formally, we have the following:

Proposition 1 (Optimality of extreme points)

Let P be a nonempty polyhedron with at least one extreme point. If $\min \left\{c^{T} x \mid x \in P\right\}$ has an optimal solution, then it has an optimal solution that is an extreme point of P.

- So we only need to focus on extreme points.
- How to list all extreme points?
- How to (let a computer) verify that a point is an extreme point?
- A geometric optimality condition is not enough; we need an algebraic optimality condition.
- Based on that, we may construct our algorithm: the simplex method.

Road map

- Algebraic optimality condition.
- The simplex method.
- More about the simplex method.

Canonical and standard form LPs

- An LP

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b
\end{aligned}
$$

is in the canonical form.

- They are equivalent:

$$
\begin{aligned}
& \begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b \quad \Rightarrow
\end{aligned} \\
& \begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b \quad \Rightarrow
\end{aligned} \\
& \min c^{T} x^{+}-c^{T} x^{-} \\
& \text {s.t. } A x^{+}-A x^{-}+I s=b \\
& x^{+}, x^{-}, s \geq 0, s \in \mathbb{R}^{m}
\end{aligned}
$$

and

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x=b \quad \Rightarrow \\
& x \geq 0
\end{array} \quad \begin{array}{ll}
\min & c^{T} x \\
\text { s.t. }
\end{array}\left[\begin{array}{c}
A \\
-A \\
-I
\end{array}\right] x \leq\left[\begin{array}{c}
b \\
-b \\
0
\end{array}\right] .
$$

- An LP

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

is in the standard form.

Binding constraints

- Consider an LP $\min \left\{c^{T} x \mid x \in P\right\}$ with $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ for some $m \times n$ matrix A. We will assume that $m \geq n$.

Definition 1 (Binding constraint)

Given $\bar{x} \in \mathbb{R}^{n}$ and a constraint $a^{T} x \leq b$, we say the constraint is binding or active at \bar{x} if $a^{T} \bar{x}=b$.

Basic solutions

Definition 2 (Basic solution)

$\bar{x} \in \mathbb{R}^{n}$ is a basic solution of P if there exist n linearly independent constraints that are binding at \bar{x}.

Definition 3 (Basic feasible solution)

$\bar{x} \in \mathbb{R}^{n}$ is a basic feasible solution of P if it is basic and feasible.

Optimality of basic feasible solutions

Proposition 2 (Optimality of basic feasible solutions)

Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\} . \bar{x} \in P$ is a basic feasible solution of P if and only if \bar{x} is an extreme point of P.

Proof. (\Rightarrow) Suppose \bar{x} is a bfs of P, then there exist n linearly independent binding constraints. Let's partition A into $\left[\begin{array}{l}A^{=} \\ A^{<}\end{array}\right]$such that $\left[\begin{array}{l}A^{=} \\ A^{<}\end{array}\right] \bar{x}=\left[\begin{array}{l}b^{=} \\ b^{<}\end{array}\right]<b$, then $A^{=}$has at least n rows. In addition, we know that there exists an $n \times n$ nonsingular \tilde{A} which is a submatrix of $A^{=}$. Suppose there exist $x^{1}, x^{2} \in P$ such that $x^{1} \neq x^{2}$ and $\bar{x}=\lambda x^{1}+(1-\lambda) x^{2}$ for some $\lambda \in(0,1)$, then

$$
\tilde{b}=\tilde{A} \bar{x}=\lambda \tilde{A} x^{1}+(1-\lambda) \tilde{A} x^{2} \leq \lambda \tilde{b}+(1-\lambda) \tilde{b}=\tilde{b}
$$

so $\tilde{b}=\tilde{A} x^{1}=\tilde{A} x^{2}$. Then the nonsingularity of \tilde{A} implies that $x^{1}=x^{2}$, which is a contradiction.

Optimality of basic feasible solutions

Proof continued. (\Leftarrow) Recall that we partition A into $\left[\begin{array}{l}A^{=} \\ A^{<}\end{array}\right]$such that

$$
\left[\begin{array}{l}
A^{=} \\
A^{<}
\end{array}\right] \bar{x}=\left[\begin{array}{l}
b^{=} \\
b^{<}
\end{array}\right]<b .
$$

Suppose \bar{x} is not a bfs, then rank $A^{=}<n$, i.e., $\operatorname{dim} \mathcal{N}\left(A^{=}\right)>0$. Let $0 \neq y \in \mathcal{N}\left(A^{=}\right)$, i.e., $y \neq 0, A^{=} y=0$; also let $x^{1}=\bar{x}+\epsilon y, x^{2}=\bar{x}-\epsilon y$ for some $\epsilon>0$. Then

$$
A^{=} x^{1}=A^{=}(\bar{x}+\epsilon y)=A^{=} \bar{x}+\epsilon A^{=} y=A^{=} \bar{x}
$$

and

$$
A^{<} x^{1}=A^{<}(\bar{x}+\epsilon y)=A^{<} \bar{x}+\epsilon A^{<} y=b^{<}+\epsilon A^{<} y<b
$$

for ϵ sufficiently small. So $x^{1} \in P$. Similarly, $x^{2} \in P$, and thus $\bar{x}=\frac{1}{2} x^{1}+\frac{1}{2} x^{2}$. As $y \neq 0$, we know $x^{1} \neq x^{2}$. Therefore, \bar{x} is not an extreme point.

Enumerating basic feasible solutions

- Now we only need to list all basic feasible solutions.
- Checking whether a point is a basic feasible solution is easy.
- Enumerating all of them can also be done systematically.
- Pick n constraints out of the m ones.
- Check whether they are linearly independent (how?).
- Set them to binding and find a basic solution (how?).
- Check whether it is feasible.
- However, this is impractical!
- There are $\binom{m}{n}$ distinct ways of selecting constraints. Still too many!
- It is uneasy to deal with infeasible and unbounded LPs.
- We need a "clever way" to search among basic feasible solutions.
- The simplex method is the clever way.
- It is for standard form LPs.

Basic feasible solutions for standard form LPs

- Consider a standard form LP

	min	$c^{T} x$	
s.t.	$A x=b$	$(m$ equalities $)$	
	$x \geq 0$	$(n$ inequalities $)$.	

Definition 4 (Basic solutions for standard form LPs)
$\bar{x} \in \mathbb{R}^{n}$ is a basic solution of (P) if there exists a partition of A into $\left[A_{B} A_{N}\right]$ and of \bar{x} into $\left(\bar{x}_{B}, \bar{x}_{N}\right)$ such that A_{B} is a nonsingular $m \times m$ matrix, $\bar{x}_{B}=A_{B}^{-1} b$, and $\bar{x}_{N}=0$.

- Among the n inequalities, select $n-m$ of them to be binding.
- Among the n variables, select m of them to be basic:
- Variables $x_{i} \mathrm{~S}, i \in B$, are basic variables.
- Variables $x_{j} \mathrm{~s}, j \in N$, are nonbasic variables. $x_{j}=0$ for all $j \in N$.
- B is called the basis of the basic solution.
- Note that $\bar{x}=\left(\bar{x}_{B}, \bar{x}_{N}\right)$ is a basic feasible solution if $\bar{x}_{B}=A_{B}^{-1} b \geq 0$.

Basic feasible solutions for standard form LPs

- As an example, consider a standard form LP with

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
3 \\
-1
\end{array}\right] .
$$

- There are three ways of selecting $m=2$ basic variables out of the $n=3$ variables:
- Let $B=\{1,2\}, N=\{3\}$, then $A_{B}=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right], A_{N}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, $A_{B}^{-1} b=\left(x_{1}, x_{2}\right)=(2,1), x_{3}=0$. We then have $\bar{x}=(2,1,0)$ as a basic feasible solution.
- Let $B=\{2,3\}, N=\{1\}$, then $\bar{x}=(0,3,2)$ is a basic feasible solution.
- Let $B=\{1,3\}, N=\{2\}$, then $\bar{x}=(3,0,-1) \nsupseteq 0$ is not a basic feasible solution.
- The order matters!

Road map

- Algebraic optimality condition.
- The simplex method.
- More about the simplex method.

The simplex method

- We now consider solving a standard form LP

$$
\begin{array}{rll}
& \min & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

- We may assumed that rank $A=m$ WLOG.
- Otherwise, we can just remove those redundant constraints.
- The simplex method proceeds as follows: Given a basic feasible solution $x=\left(x_{B}, x_{N}\right)$ in each iteration, try to move to another strictly better basic feasible solution (i.e., one with a strictly lower objective value).
- Greedy search: A local minimum is a global minimum.
- Search among extreme points only.
- How to do it algebraically?

The reduced form

- First, we rewrite (P) as

$$
\begin{aligned}
\min & c_{B}^{T} x_{B}+c_{N}^{T} x_{N} \\
\text { s.t. } & A_{B} x_{B}+A_{N} x_{N}=b \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

Because

$$
\begin{aligned}
& A_{B} x_{B}+A_{N} x_{N}=b \\
\Leftrightarrow & x_{B}=A_{B}^{-1}\left(b-A_{N} x_{N}\right)=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N}
\end{aligned}
$$

(P) can be further reduced to $\left(P^{\prime}\right)$:

$$
\begin{array}{cl}
\min & c_{B}^{T} A_{B}^{-1} b+\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} \\
\text { s.t. } & A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \geq 0, x_{N} \geq 0
\end{array}
$$

- $\bar{c}_{N}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}$ is the reduced costs of the nonbasic set N.
- Recall that $x_{N}=0$. Therefore, $c_{B}^{T} A_{B}^{-1} b$ is the objective value of B.

Making an improvement

$$
\begin{aligned}
\min & c_{B}^{T} A_{B}^{-1} b+\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} \\
\text { s.t. } & A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \geq 0, x_{N} \geq 0
\end{aligned}
$$

- Looking at the objective function. If there exists $j \in N$ such that the reduced cost

$$
\bar{c}_{j}=c_{j}-c_{B}^{T} A_{B}^{-1} A_{j}<0
$$

we can increase x_{j} (which is a nonbasic variable and is 0 currently) to lower the objective value.

- We should keep increasing x_{j} as long as we satisfy the constraints.
- Obviously, $x_{N}^{\prime} \geq 0$ will still be satisfied.
- How to check $x_{B}^{\prime}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N}^{\prime}=A_{B}^{-1} b-A_{B}^{-1} A_{j} x_{j}^{\prime} \geq 0$?

When to stop?

$$
\begin{array}{cl}
\min & c_{B}^{T} A_{B}^{-1} b+\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} \\
\text { s.t. } & A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \geq 0, x_{N} \geq 0
\end{array}
$$

- Let $\bar{b}=A_{B}^{-1} b \geq 0$ and $d=A_{B}^{-1} A_{j}$, then

$$
\begin{array}{r}
x_{B}^{\prime}=\bar{b}-x_{j}^{\prime} d=\left[\begin{array}{l}
+ \\
+ \\
+ \\
+
\end{array}\right]-x_{j}^{\prime}\left[\begin{array}{c}
+ \\
- \\
0 \\
+
\end{array}\right] \geq 0 \\
\Leftrightarrow \alpha^{*}=\min _{i \in B}\left\{\left.\frac{\bar{b}_{i}}{d_{i}} \right\rvert\, d_{i}>0\right\} \text { and } x_{j}^{\prime} \in\left[0, \alpha^{*}\right] .
\end{array}
$$

- We will increase x_{j} to $x_{j}^{\prime}=\alpha^{*}$.
- This will make x_{l} becomes $x_{l}^{\prime}=0$, where

$$
l \in \underset{i \in B}{\operatorname{argmin}}\left\{\left.\frac{\bar{b}_{i}}{d_{i}} \right\rvert\, d_{i}>0\right\} .
$$

Entering and leaving variables

$$
\begin{array}{cl}
\min & c_{B}^{T} A_{B}^{-1} b+\left(c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}\right) x_{N} \\
\text { s.t. } & A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \geq 0, x_{N} \geq 0
\end{array}
$$

- We have chosen to increase x_{j}, where its reduced cost

$$
\bar{c}_{j}=c_{j}-c_{B}^{T} A_{B}^{-1} A_{j}<0
$$

- We stop when $x_{j}=\alpha^{*}$, where

$$
l \in \underset{i \in B}{\operatorname{argmin}}\left\{\left.\frac{\bar{b}_{i}}{d_{i}} \right\rvert\, d_{i}>0\right\} \quad \text { and } \quad \alpha^{*}=\frac{\bar{b}_{l}}{d_{l}}
$$

- Originally, $x_{j}=0$ and $x_{l}>0$. Now $x_{j}>0$ and $x_{l}=0 .{ }^{1}$
- We say that x_{j} enters the basis and x_{l} leaves the basis.
- x_{j} is the entering variable.
- x_{l} is the leaving variable.
${ }^{1}$ If $\bar{b}_{l}=0, x_{j}=0$. we will ignore such a degenerate case in this lecture.

The algorithm

- The simplex method can now be summarized below:
(Initialization) Input a basic feasible solution $\left(x_{B}, x_{N}\right)$, where $x_{B}=A_{B}^{-1} b \geq 0$ and $x_{N}=0$.

1. (Entering) Let $\bar{c}_{N}=c_{N}-c_{B}^{T} A_{B}^{-1} A_{N}$.
1.1 If for all $j \in N$ we have $\bar{c}_{j} \geq 0,\left(x_{B}, x_{N}\right)$ is optimal and we stop. ${ }^{2}$
1.2 Otherwise, pick an x_{j} with $\bar{c}_{j}<0$.
2. (Leaving) Let $d=A_{B}^{-1} A_{j}$ and $\alpha^{*}=\min _{i \in B}\left\{\left.\frac{\bar{b}_{i}}{d_{i}} \right\rvert\, d_{i}>0\right\}$ where $\bar{b}=A_{B}^{-1} b$.
2.1 If for all $i \in B$ we have $d_{i} \leq 0$, the problem is unbounded and we stop.
2.2 Otherwise, let $l \in \operatorname{argmin}_{i \in B}\left\{\left.\frac{\bar{b}_{i}}{d_{i}} \right\rvert\, d_{i}>0\right\}$, set $x_{l}=0$, set $x_{j}=\alpha^{*}$, replace B by $B \cup\{j\} \backslash\{l\}$, and replace N by $N \cup\{l\} \backslash\{j\}$. Go to 1 and repeat.

- Remaining questions:
- How to find an initial basic feasible solution?
- Is A_{B} always invertible?
- How to select an entering/leaving variable among multiple candidates?

[^0]
An example

- Consider the LP

$$
\begin{array}{ccccc}
\min & 2 x_{1} \\
\mathrm{s.t.} & x_{1}+x_{2}+x_{3}+x_{4}=2 \\
& 2 x_{1} & +3 x_{3}+4 x_{4}=2 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

- (Initialization) If $B=\{1,2\}$ and $N=\{3,4\}$, we have

$$
A_{B}=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right], A_{N}=\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right], x_{B}=A_{B}^{-1} b=\left[\begin{array}{l}
1 \\
1
\end{array}\right], x_{N}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

So $x^{0}=(1,1,0,0)$ can be an initial basic feasible solution.

- (Iteration 1) Compute $\bar{c}_{N}^{T}=c_{N}^{T}-c_{B}^{T} A_{B}^{-1} A_{N}$ as

$$
\left[\begin{array}{ll}
\bar{c}_{3} & \bar{c}_{4}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & \frac{1}{2} \\
1 & \frac{-1}{2}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
-3 & -4
\end{array}\right]<0 .
$$

Let's enter x_{3}.

An example

- (Iteration 1 continued) Now we have

$$
x_{B}^{\prime}=A_{B}^{-1} b-A_{B}^{-1} A_{3} x_{3}^{\prime}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2}
\end{array}\right] x_{3}^{\prime} .
$$

Since only $\frac{3}{2}>0$, we let $x_{3}^{\prime}=\frac{1}{\frac{3}{2}}=\frac{2}{3}$ and $x_{1}^{\prime}=0$. The current solution $x^{1}=\left(0, \frac{4}{3}, \frac{2}{3}, 0\right)$ is better (why $x_{2}=\frac{4}{3} ?$)

- (Iteration 2) Now, $B=\{3,2\}, N=\{1,4\}$, and 3

$$
\begin{aligned}
\bar{c}_{N}^{T} & =\left[\begin{array}{ll}
\bar{c}_{1} & \bar{c}_{4}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
3 & 0
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 0
\end{array}\right] \geq 0 .
\end{aligned}
$$

Therefore, the current solution $x^{1}=\left(0, \frac{4}{3}, \frac{2}{3}, 0\right)$ is optimal.

[^1]
Road map

- Algebraic optimality condition.
- The simplex method.
- More about the simplex method.
- Finding an initial basic feasible solution.
- The invertiability of A_{B}.
- The rule for selecting entering/leaving variable.

Initial basic feasible solution

- To find an initial basic feasible solution (or show that there is none), we may apply the two-phase method.
- Given (P), we construct a phase-I LP $(Q):^{4}$

\min	$c^{T} x$		
s.t.	$A x=b$		
	$x \geq 0$	(Q)	\min
s.t.	$1^{T} y$		
	$A x+I y=b$		
		$x \geq 0$.	

- (Q) has a basic feasible solution $(x, y)=(0, b)$, so we can apply the simplex method on (Q).
- Key: (P) is feasible if and only if (Q) has an optimal objective value 0 .
- After we solve (Q), either we know (P) is infeasible or the optimal solution for $(Q),(\bar{x}, \bar{y})=(\bar{x}, 0)$, gives up a basic feasible solution for $(P), \bar{x}$.
- Then we can apply the simplex method to (P).

[^2]
Example

- To find an initial basic feasible solution (or show that there is none), we may apply the two-phase method.
- Given (P), we construct a phase-I LP (Q) :

$$
\begin{aligned}
& \min c^{T} x \\
& (P) \quad \text { s.t. } \quad A x=b \\
& x \geq 0 \\
& \min 1^{T} y \\
& (Q) \quad \text { s.t. } A x+I y=b \\
& x, y \geq 0 \text {. }
\end{aligned}
$$

- (Q) has a basic feasible solution $(x, y)=(0, b)$, so we can apply the simplex method on (Q).
- (P) is feasible if and only if (Q) has an optimal value 0 .
- After we solve (Q), either we know (P) is infeasible or the optimal solution for $(Q),(\bar{x}, \bar{y})=(\bar{x}, 0)$, gives up a basic feasible solution for $(P), \bar{x}$.
- Then we can apply the simplex method to (P).

Invertiability of the basic matrix

- At each iteration, we replace the column A_{l} in A_{B} by A_{j} to get A_{B}^{\prime}.
- Is such A_{B}^{\prime} still nonsingular?
- With A_{j}, we do $d=A_{B}^{-1} A_{j}$ and $l=\operatorname{argmin}_{i}\left\{\frac{\bar{b}_{i}}{d_{i}}: d_{i}>0\right\}$ to get A_{l}.
- $d=A_{B}^{-1} A_{j} \Leftrightarrow A_{j}=A_{B} d$.
- So we can write

$$
A_{B}^{\prime}=\left[\begin{array}{ccccccc}
\mid & \mid & \mid & \mid & \mid & \mid & \mid \\
A_{1} & \cdots & A_{l-1} & A_{j} & A_{l+1} & \cdots & A_{m} \\
\mid & \mid & \mid & \mid & \mid & \mid & \mid
\end{array}\right]=A_{B} I_{l d},
$$

where

$$
I_{l d}=\left[\begin{array}{ccccccc}
\mid & \mid & \mid & \mid & \mid & \mid & \mid \\
e_{1} & \cdots & e_{l-1} & d & e_{l+1} & \cdots & e_{m} \\
\mid & \mid & \mid & \mid & \mid & \mid & \mid
\end{array}\right] .
$$

- $\operatorname{det} A_{B}^{\prime}=\operatorname{det} A_{B} \operatorname{det} I_{l d}$, so $\operatorname{det} A_{B}^{\prime} \neq 0$ if and only if $\operatorname{det} I_{l d} \neq 0$.
- By $d_{l}>0$ (why?), we know $\operatorname{det} I_{l d} \neq 0$, so A_{B}^{\prime} is nonsingular.

Degeneracy

- Why is variable selection rule important?
- In general, an LP may be degenerate.

Definition 5

A basic solution \bar{x} is degenerate if there are more than n binding constraints of \bar{x}.

Definition 6

An LP is degenerate if there is at least one degenerate basic feasible solution.

- What may happen when we run the simplex
 method to a degenerate LP?

Feasible region of standard form LPs

- Let's become more familiar with constraints in a standard-form LP first.
- For a standard form LP with A being 1×3, there are three variables and one constraint.
- Each side of this triangle can be expressed by a nonnegativity constraint $x_{i}=0$.
- At P, the nonbasic set is $N=\{1,2\}$.
- At each basic feasible solution, $j \in N$ means that $x_{j} \geq 0$ is binding.
- When we run the simplex method on standard form LPs, we move along edges.
- We move along binding nonnegativity
 constraints.

No improvement in an iteration

- In this example, A is 5×7.
- The optimal solution is point R.
- The initial basic feasible solution is point P .
- At point P , the two binding constraints are $x_{1} \geq 0$ and $x_{7} \geq 0$.
- Moving along either one is improving.
- Suppose we move along $x_{7} \geq 0$.
- We stop when we hit $x_{6} \geq 0$.
- x_{1} enters and x_{6} leaves.
- The set of binding constraints becomes $x_{6} \geq 0$ and $x_{7} \geq 0$.

- Only moving along $x_{6} \geq 0$ is improving.
- We stop when we hit... what?

No improvement in an iteration

- If we move along $x_{6} \geq 0$, we arrive point Q .
- We hit two constraints at the same time.
- We hit both $x_{4} \geq 0$ and $x_{5} \geq 0$.
- In simplex, we will choose one of them into the set of binding constraints.
- If we (unluckily) choose to include $x_{5} \geq 0$:
- x_{7} enters and x_{5} leaves.
- At this moment, $x_{4}=0$ is treated as basic.
- We now may move along $x_{6} \geq 0$ or $x_{5} \geq 0$.
- Moving along $x_{6} \geq 0$ is not improving.
- Moving along $x_{5} \geq 0$ is improving.
- However, we hit $x_{4} \geq 0$ immediately!

- In this iteration, we move "from Q to Q ".
- It is possible to have no improvement in a simplex iteration.

No improvement in an iteration

- We hit $x_{4} \geq 0$ when we move along $x_{5} \geq 0$.
- So the set of binding constraints becomes $x_{5} \geq 0$ and $x_{4} \geq 0$.
- x_{6} enters and x_{4} leaves.
- We may now move along $x_{4} \geq 0$ and move to the optimal point R.
- In general, we may get stock at a basic feasible solution forever!
- When we do not apply a "good" variable
 selection rule.

Variable selection rule

- To guarantee that the simplex terminates, we need a well-designed variable selection rule.

Proposition 3 (The smallest index rule)

Using the following rule guarantees to solve an LP in finite steps:

- Among nonbasic variables with $\bar{c}_{j}<0$, pick the one with the smallest index to enter the basis.
- Among basic variables that minimizes $\frac{\bar{b}_{i}}{d_{i}}$, pick the one with smallest index to exist.

[^0]: ${ }^{2}$ Because a local minimum is a global minimum.

[^1]: ${ }^{3}$ Keep an eye on how the columns of A_{B} and A_{N} are ordered. Those orders must be consistent with those of c_{B} and c_{N} !

[^2]: ${ }^{4}$ Even if in (P) we have a maximization objective function, (Q) is still the same.

