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Introduction

» Last time we have shown that “if there is an optimal solution, there is
an extreme point optimal solution.”

» Formally, we have the following:

Proposition 1 (Optimality of extreme points)

Let P be a nonempty polyhedron with at least one extreme point. If
min{c! x|z € P} has an optimal solution, then it has an optimal
solution that is an extreme point of P.

So we only need to focus on extreme points.
How to list all extreme points?

How to (let a computer) verify that a point is an extreme point?

vV v VY

A geometric optimality condition is not enough; we need an
algebraic optimality condition.

» Based on that, we may construct our algorithm: the simplex method.



Optimization, Fall 2013 — The Simplex Method 3/30
LAlgebraic optimality condition

Road map

» Algebraic optimality condition.
» The simplex method.
» More about the simplex method.
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LAlgebraic optimality condition
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Canonical and standard form LPs

» An LP

min ¢’z

st. Az <b

is in the canonical form.

» They are equivalent:

min Tz
st. Az <b =
and
min 'z
st. Ar=1b =
x>0

» An LP
min ¢’z
st. Az =25b
x>0

is in the standard form.

min Lot — Tz~
st. Azt —Ax—+Is=0b
T, 27, >0, se R™

min c¢'x

s.t. A |lzxz<| —b
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Binding constraints

» Consider an LP min{c’z|z € P} with P = {z € R"|Az < b} for some
m x n matrix A. We will assume that m > n.

Definition 1 (Binding constraint)

Given T € R™ and a constraint a”x < b, we say the constraint is
binding or active at T if a* % = b.

nonbinding

binding

nonbinding
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Basic solutions

Definition 2 (Basic solution)

T € R™ is a basic solution of P if there exist
n linearly independent constraints that are
binding at T.

Definition 3 (Basic feasible solution)

T € R™ is a basic feasible solution of P if it
is basic and feasible.
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Optimality of basic feasible solutions

Proposition 2 (Optimality of basic feasible solutions)

Let P = {x € R"|Az < b}. T € P is a basic feasible solution of P if
and only if T is an extreme point of P.

Proof. (=) Suppose Z is a bfs of P, then there exist n linearly

. s . . . A=
independent binding constraints. Let’s partition A into { A< ] such

that [ i; } = { 2; } < b, then A~ has at least n rows. In

addition, we know that there exists an n X n nonsingular A which is a
submatrix of A=. Suppose there exist z', 22 € P such that 2! # 22
and = Az' + (1 — \)2? for some )\ € (0,1), then

b= Az = Maz' + (1 = N Az? < Ao+ (1 = N)b = b,

)—AO
” G“I

= Az! = Az?. Then the nonsingularity of A implies that
22, which is a contradiction.
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Optimality of basic feasible solutions

Proof continued. (<) Recall that we partition A into { ﬁ;

that
A= | _ b=
A< [T=] < | < b.

Suppose Z is not a bfs, then rank A= < n, i.e., dim N (A7) > 0. Let
0#yeN(AT),ie,y#0,ATy=0; also let 2' =% + ey, 2> =T — ey
for some € > 0. Then

] such

ATe' = AT+ ey) = AT+ €A™y = A%
and
ASz' = AT+ ey) = AT+ Ay =b" + €Ay <b

for € sufficiently small. So 2! € P. Similarly, 2% € P, and thus
T = %xl + %xQ. As y # 0, we know ! # 22. Therefore, Z is not an
extreme point. O
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Enumerating basic feasible solutions

v

Now we only need to list all basic feasible solutions.

v

Checking whether a point is a basic feasible solution is easy.

v

Enumerating all of them can also be done systematically.
Pick n constraints out of the m ones.

Check whether they are linearly independent (how?).

Set them to binding and find a basic solution (how?).

Check whether it is feasible.

» However, this is impractical!

vVYyVvVvly

» There are (?:) distinct ways of selecting constraints. Still too many!
> It is uneasy to deal with infeasible and unbounded LPs.
» We need a “clever way” to search among basic feasible solutions.

» The simplex method is the clever way.
» It is for standard form LPs.
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Basic feasible solutions for standard form LPs

» Consider a standard form LP

min ¢’z
(P) st. Az=b (m equalities)
x>0 (n inequalities).

Definition 4 (Basic solutions for standard form LPs)

z € R™ is a basic solution of (P) if there exists a partition of A into
[Ap AN] and of T into (Tp,TN) such that Ap is a nonsingular m x m
matriz, Tp = Aglb, and Ty = 0.

» Among the n inequalities, select n — m of them to be binding.

» Among the n variables, select m of them to be basic:

» Variables z;s, ¢ € B, are basic variables.
» Variables z;s, j € N, are nonbasic variables. z; =0 for all j € N.
» B is called the basis of the basic solution.

» Note that T = (Zp,Zx) is a basic feasible solution if Zp = Aglb > 0.
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Basic feasible solutions for standard form LPs

» As an example, consider a standard form LP with

11 0 3
A_[O 11] and b—[l].

» There are three ways of selecting m = 2 basic variables out of the
n = 3 variables:

0 1
Ag'b = (x1,22) = (2,1), 23 = 0. We then have z = (2,1,0) as a basic
feasible solution.
» Let B={2,3}, N = {1}, then T = (0, 3,2) is a basic feasible solution.
» Let B ={1,3}, N = {2}, then Z = (3,0, —1) # 0 is not a basic feasible
solution.

>LetB:{172}7N:{3}7thenAB:[1 _11:|7AN:|:O:|7

» The order matters!
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Road map

» Algebraic optimality condition.

» The simplex method.

» More about the simplex method.
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The simplex method

» We now consider solving a standard form LP

min Tz
(P) st. Az =b
x> 0.

» We may assumed that rank A = m WLOG.
» Otherwise, we can just remove those redundant constraints.

» The simplex method proceeds as follows: Given a basic feasible
solution z = (zp,zn) in each iteration, try to move to another
strictly better basic feasible solution (i.e., one with a strictly lower
objective value).

» Greedy search: A local minimum is a global minimum.
» Search among extreme points only.

» How to do it algebraically?
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The reduced form
> First, we rewrite (P) as
min chap 4+ chay
st. Aprp+Anzny =0
zg,rN > 0.
Because
Apxgp+Anzny =D
& ap=Az'(b— Ayan) = A5'b — A Ay,
(P) can be further reduced to (P’):
min  c5AZ'b+ (ck — cEAS AN)zn
s.t. Aélb — AEIANLL'N 2 07 N Z 0.

> Ny = cJTV — chglAN is the reduced costs of the nonbasic set V.
» Recall that 2y = 0. Therefore, c5 A5'b is the objective value of B.

14 /30
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Making an improvement

min ch;;lb + (& - c%AglAN)xN

st. Ap'b—AZ'Anzn >0, a2y >0

» Looking at the objective function. If there exists j € N such that the
reduced cost
Ej =cj — CgAglAj < 0,
we can increase z; (which is a nonbasic variable and is 0 currently) to
lower the objective value.
» We should keep increasing x; as long as we satisfy the constraints.

» Obviously, z/y > 0 will still be satisfied.
» How to check 2z = Ap'b— Az'Analy = Az'b— AZ' Azl > 07
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LThe simplex method

When to stop?

min chglb + (& - chglAN)xN

st. Ag'b—AZ'Ayzy >0, an >0

> Let b= Aglb >0and d= AJEIAJ-7 then

+ +
— Jr —
xleb—x;d: 4 —x; 0 >0

+ +
(:)a*:rirég{dd >0} and z; € [0,a"].

» We will increase x; to 2 = o*
/
Zy

» This will make x; becomes = 0, where

b
l € argmin { d; > O}.
ies | d;
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Entering and leaving variables

min chglb +(ck —cEAg YAn)en

st. Ap'b—AZ'Anzyn >0, zy >0
» We have chosen to increase x;, where its reduced cost

E]: 7CBA 1A <0

» We stop when z; = o*, where

b

i€B dy

b,
le argmin{({ d; > O} and of =

» Originally, z; = 0 and z; > 0. Now z; > 0 and z; = 0.}

> We say that x; enters the basis and x; leaves the basis.

» z; is the entering variable.
» 1 is the leaving variable.

1If b, = 0, z; = 0. we will ignore such a degenerate case in this lecture.

17 /30
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The algorithm

» The simplex method can now be summarized below:

(Initialization) Input a basic feasible solution (zp, 2y ), where
rg = Aglb >0 and zy = 0.
1. (Entering) Let ey = ¢cn — chl;lAN,
1.1 If for all j € N we have & > 0, (zp,zy) is optimal and we stop.?
1.2 Otherwise, pick an x; with ¢; < 0.
2. (Leaving) Let d = Az'A; and o = minieB{z—”di > 0} where b= AZ'b.
2.1 If for all ¢ € B we have d; < 0, the problem is unbounded and we stop.
2.2 Otherwise, let | € argrninieB{Z—“di > 0}, set x; =0, set ¢; = a*, replace
B by BU{j}\ {l}, and replace N by N U{i}\ {j}. Go to 1 and repeat.
» Remaining questions:
» How to find an initial basic feasible solution?
» Is Ap always invertible?
» How to select an entering/leaving variable among multiple candidates?

2Because a local minimum is a global minimum.
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An example
» Consider the LP

min 2x7
st. 1 4+ T2 + x3 + x4 = 2
22, + 3x3 + 4dxy = 2

T, T2, T3, T4 2 0.

> (Initialization) If B = {1,2} and N = {3,4}, we have

1 11 _ 1 0
S E R Y T F b

So 2% = (1,1,0,0) can be an initial basic feasible solution.

» (Tteration 1) Compute ¢i = ck — c5AZ' Ay as

(o w)=lo0)-[2 0] *

=1
2

Let’s enter x3.

“; }l]:[—s -4 ]<o.

19 /30
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LThe simplex method

An example

(Iteration 1 continued) Now we have
1 3
= agam=[ 1] [ 4 ]
2

Since only 2 > 0, we let 25 = + = 2 and &} = 0. The current solution
2

(Oa ga 370) is better (Why Ty = %?)
(Iteratlon 2) Now, B = {3,2}, N = {1,4}, and?

—[20]-[0 0] [ ] [ ][2 0]>0
0,

,2,0) is optimal.

CAJ\»J>

=

Therefore, the current solution z!

3Keep an eye on how the columns of Ag and An are ordered. Those orders

must be consistent with those of cp and cp!
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Road map

» Algebraic optimality condition.
» The simplex method.

» More about the simplex method.

» Finding an initial basic feasible solution.
» The invertiability of Ap.
» The rule for selecting entering/leaving variable.
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Initial basic feasible solution

» To find an initial basic feasible solution (or show that there is none),
we may apply the two-phase method.

» Given (P), we construct a phase-I LP (Q):*

min 'z min 17y
(P) st. Az =0 (Q) st. Az+Iy=1D
x>0 z,y > 0.

> (Q) has a basic feasible solution (z,y) = (0,b), so we can apply the
simplex method on (Q).

» Key: (P) is feasible if and only if () has an optimal objective value 0.

> After we solve (@), either we know (P) is infeasible or the optimal
solution for (@), (Z,y) = (z,0), gives up a basic feasible solution for
(P), z.

» Then we can apply the simplex method to (P).

4Bven if in (P) we have a maximization objective function, (Q) is still the same.
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Example

» To find an initial basic feasible solution (or show that there is none),
we may apply the two-phase method.

» Given (P), we construct a phase-I1 LP (Q):

min 'z min 17y
(P) st. Az =D Q) st. Arx+Iy=0
x>0 z,y > 0.

> (Q) has a basic feasible solution (z,y) = (0,b), so we can apply the
simplex method on (Q).

> (P) is feasible if and only if () has an optimal value 0.

> After we solve (@), either we know (P) is infeasible or the optimal
solution for (@), (Z,y) = (z,0), gives up a basic feasible solution for
(P), =.

» Then we can apply the simplex method to (P).
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Invertiability of the basic matrix

> At each iteration, we replace the column A; in Ag by A; to get A%.
> Is such A’; still nonsingular?

» With A;, we dod = Az'A; and | = argmini{Z—i :d; > 0} to get Aj.

> d= AEIAJ' < Aj = ABd.

> So we can write

where

Ly = er -+ e—1 d eq1 - €m

» det A’z = det Ap det I,4, so det Az # 0 if and only if det I;4 # 0.
» By d; > 0 (why?), we know det ;4 # 0, so Az is nonsingular.

24 /30
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Degeneracy

» Why is variable selection rule important?

» In general, an LP may be degenerate.

Definition 5

A basic solution T is degenerate if there are
more than n binding constraints of T.

Definition 6

An LP is degenerate if there is at least one
degenerate basic feasible solution.

» What may happen when we run the simplex
method to a degenerate LP?

25/ 30
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Feasible region of standard form LPs

» Let’s become more familiar with constraints
in a standard-form LP first.
» For a standard form LP with A being 1 x 3,
there are three variables and one constraint.
» Each side of this triangle can be expressed by
a nonnegativity constraint x; = 0.
> At P, the nonbasic set is N = {1, 2}.
» At each basic feasible solution, j € N means
that x; > 0 is binding.
» When we run the simplex method on
standard form LPs, we move along edges.

» We move along binding nonnegativity
constraints.



Optimization, Fall 2013 — The Simplex Method 27 /30
L More about the method

No improvement in an iteration

v

In this example, A is 5 x 7.

v

The optimal solution is point R.

v

The initial basic feasible solution is point P.
> At point P, the two binding constraints are
z1 >0 and x7 > 0.
» Moving along either one is improving.
» Suppose we move along x7 > 0.

v

We stop when we hit xg > 0.

» 11 enters and xg leaves.

> The set of binding constraints becomes x¢ > 0
and x7 > 0.

» Only moving along ¢ > 0 is improving.

v

We stop when we hit... what?
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No improvement in an iteration

v

If we move along xg > 0, we arrive point Q.
We hit two constraints at the same time.

» We hit both x4 > 0 and z5 > 0.
» In simplex, we will choose one of them into
the set of binding constraints.

v

v

If we (unluckily) choose to include x5 > 0:

» x7 enters and x5 leaves.
» At this moment, x4 = 0 is treated as basic.

» We now may move along zg > 0 or x5 > 0.
» Moving along z¢ > 0 is not improving.
» Moving along x5 > 0 is improving.

» However, we hit 4 > 0 immediately!
> In this iteration, we move “from Q to Q”.
» It is possible to have no improvement in a
simplex iteration.
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No improvement in an iteration

» We hit z4 > 0 when we move along x5 > 0.
> So the set of binding constraints becomes
x5 > 0 and z4 > 0.
» x4 enters and x4 leaves.
» We may now move along x4 > 0 and move to
the optimal point R.

» In general, we may get stock at a basic
feasible solution forever!

» When we do not apply a “good” variable
selection rule.
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Variable selection rule

» To guarantee that the simplex terminates, we need a well-designed
variable selection rule.

Proposition 3 (The smallest index rule)

Using the following rule guarantees to solve an LP in finite steps:

> Among nonbasic variables with ¢; < 0, pick the one with the smallest
indez to enter the basis.

» Among basic variables that minimizes
index to exist.

%, pick the one with smallest
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