MBA 8023: Optimization The Simplex Method

Ling-Chieh Kung

Department of Information Management National Taiwan University

December 11, 2013

Introduction

- ▶ Last time we have shown that "if there is an optimal solution, there is an extreme point optimal solution."
- ▶ Formally, we have the following:

Proposition 1 (Optimality of extreme points)

Let P be a nonempty polyhedron with at least one extreme point. If $\min\{c^T x | x \in P\}$ has an optimal solution, then it has an optimal solution that is an extreme point of P.

- ▶ So we only need to focus on extreme points.
- ▶ How to list all extreme points?
- ▶ How to (let a computer) verify that a point is an extreme point?
- ► A geometric optimality condition is not enough; we need an algebraic optimality condition.
 - ▶ Based on that, we may construct our algorithm: the simplex method.

Optimization, Fall 2013 - The Simplex Method _ Algebraic optimality condition

Road map

► Algebraic optimality condition.

- ▶ The simplex method.
- ▶ More about the simplex method.

Canonical and standard form LPs

► An LP

► An LP

- $\begin{array}{ll} \min \quad c^T x & \min \quad c^T x \\ \text{s.t.} \quad Ax \le b & \text{s.t.} \quad Ax = b \\ & x \ge 0 \end{array}$
- is in the **canonical form**.

is in the **standard form**.

٠

▶ They are equivalent:

 $\begin{array}{ll} \min \quad c^T x \\ \text{s.t.} \quad Ax \leq b \end{array} \quad \Rightarrow \quad \begin{array}{ll} \min \quad c^T x^+ - c^T x^- \\ \text{s.t.} \quad Ax^+ - Ax^- + Is = b \\ x^+, \ x^-, \ s \geq 0, \ s \in \mathbb{R}^m \end{array}$

and

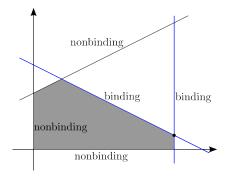
$$\begin{array}{cccc} \min & c^T x & \min & c^T x \\ \text{s.t.} & Ax = b & \Rightarrow \\ & x \ge 0 & & \text{s.t.} & \begin{bmatrix} A \\ -A \\ -I \end{bmatrix} x \le \begin{bmatrix} b \\ -b \\ 0 \end{bmatrix} \end{array}$$

Binding constraints

• Consider an LP min $\{c^T x | x \in P\}$ with $P = \{x \in \mathbb{R}^n | Ax \leq b\}$ for some $m \times n$ matrix A. We will assume that $m \geq n$.

Definition 1 (Binding constraint)

Given $\bar{x} \in \mathbb{R}^n$ and a constraint $a^T x \leq b$, we say the constraint is binding or active at \bar{x} if $a^T \bar{x} = b$.



Optimization, Fall 2013 - The Simplex Method Algebraic optimality condition

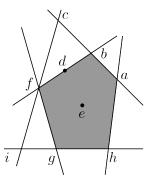
Basic solutions

Definition 2 (Basic solution)

 $\bar{x} \in \mathbb{R}^n$ is a basic solution of P if there exist n linearly independent constraints that are binding at \bar{x} .

Definition 3 (Basic feasible solution)

 $\bar{x} \in \mathbb{R}^n$ is a basic feasible solution of P if it is basic and feasible.



Optimality of basic feasible solutions

Proposition 2 (Optimality of basic feasible solutions)

Let $P = \{x \in \mathbb{R}^n | Ax \leq b\}$. $\bar{x} \in P$ is a basic feasible solution of P if and only if \bar{x} is an extreme point of P.

Proof. (\Rightarrow) Suppose \bar{x} is a bfs of P, then there exist n linearly independent binding constraints. Let's partition A into $\begin{bmatrix} A^{=} \\ A^{<} \end{bmatrix}$ such that $\begin{bmatrix} A^{=} \\ A^{<} \end{bmatrix} \bar{x} = \begin{bmatrix} b^{=} \\ b^{<} \end{bmatrix} < b$, then $A^{=}$ has at least n rows. In addition, we know that there exists an $n \times n$ nonsingular \tilde{A} which is a submatrix of $A^{=}$. Suppose there exist $x^{1}, x^{2} \in P$ such that $x^{1} \neq x^{2}$ and $\bar{x} = \lambda x^{1} + (1 - \lambda)x^{2}$ for some $\lambda \in (0, 1)$, then

$$\tilde{b} = \tilde{A}\bar{x} = \lambda \tilde{A}x^1 + (1-\lambda)\tilde{A}x^2 \le \lambda \tilde{b} + (1-\lambda)\tilde{b} = \tilde{b},$$

so $\tilde{b} = \tilde{A}x^1 = \tilde{A}x^2$. Then the nonsingularity of \tilde{A} implies that $x^1 = x^2$, which is a contradiction.

Optimality of basic feasible solutions

Proof continued. (\Leftarrow) Recall that we partition A into $\begin{bmatrix} A^{=} \\ A^{<} \end{bmatrix}$ such that

$$\begin{bmatrix} A^{=} \\ A^{<} \end{bmatrix} \bar{x} = \begin{bmatrix} b^{=} \\ b^{<} \end{bmatrix} < b.$$

Suppose \bar{x} is not a bfs, then rank $A^{=} < n$, i.e., dim $\mathcal{N}(A^{=}) > 0$. Let $0 \neq y \in \mathcal{N}(A^{=})$, i.e., $y \neq 0, A^{=}y = 0$; also let $x^{1} = \bar{x} + \epsilon y, x^{2} = \bar{x} - \epsilon y$ for some $\epsilon > 0$. Then

$$A^{=}x^{1} = A^{=}(\bar{x} + \epsilon y) = A^{=}\bar{x} + \epsilon A^{=}y = A^{=}\bar{x}$$

and

$$A^{<}x^{1} = A^{<}(\bar{x} + \epsilon y) = A^{<}\bar{x} + \epsilon A^{<}y = b^{<} + \epsilon A^{<}y < b$$

for ϵ sufficiently small. So $x^1 \in P$. Similarly, $x^2 \in P$, and thus $\bar{x} = \frac{1}{2}x^1 + \frac{1}{2}x^2$. As $y \neq 0$, we know $x^1 \neq x^2$. Therefore, \bar{x} is not an extreme point.

Enumerating basic feasible solutions

- ▶ Now we only need to list all basic feasible solutions.
- ▶ Checking whether a point is a basic feasible solution is easy.
- Enumerating all of them can also be done **systematically**.
 - Pick n constraints out of the m ones.
 - Check whether they are linearly independent (how?).
 - ▶ Set them to binding and find a basic solution (how?).
 - Check whether it is feasible.
- ▶ However, this is impractical!
 - There are $\binom{m}{n}$ distinct ways of selecting constraints. Still too many!
 - ▶ It is uneasy to deal with **infeasible** and **unbounded** LPs.
- ▶ We need a "clever way" to search among basic feasible solutions.
 - ▶ The simplex method is the clever way.
 - It is for standard form LPs.

Basic feasible solutions for standard form LPs

▶ Consider a standard form LP

(P) min
$$c^T x$$

(P) s.t. $Ax = b$ (*m* equalities)
 $x \ge 0$ (*n* inequalities).

Definition 4 (Basic solutions for standard form LPs)

 $\bar{x} \in \mathbb{R}^n$ is a basic solution of (P) if there exists a partition of A into $[A_B A_N]$ and of \bar{x} into (\bar{x}_B, \bar{x}_N) such that A_B is a nonsingular $m \times m$ matrix, $\bar{x}_B = A_B^{-1}b$, and $\bar{x}_N = 0$.

- Among the *n* inequalities, select n m of them to be binding.
- Among the n variables, select m of them to be **basic**:
 - Variables x_i s, $i \in B$, are **basic variables**.
 - ▶ Variables x_j s, $j \in N$, are **nonbasic variables**. $x_j = 0$ for all $j \in N$.
 - ▶ *B* is called the **basis** of the basic solution.

• Note that $\bar{x} = (\bar{x}_B, \bar{x}_N)$ is a basic feasible solution if $\bar{x}_B = A_B^{-1}b \ge 0$.

Basic feasible solutions for standard form LPs

▶ As an example, consider a standard form LP with

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$

- ▶ There are three ways of selecting m = 2 basic variables out of the n = 3 variables:
 - Let $B = \{1, 2\}, N = \{3\}$, then $A_B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}, A_N = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, A_B^{-1}b = (x_1, x_2) = (2, 1), x_3 = 0$. We then have $\bar{x} = (2, 1, 0)$ as a basic feasible solution.
 - Let $B = \{2, 3\}, N = \{1\}$, then $\overline{x} = (0, 3, 2)$ is a basic feasible solution.
 - ▶ Let $B = \{1, 3\}, N = \{2\}$, then $\overline{x} = (3, 0, -1) \ge 0$ is not a basic feasible solution.
- ▶ The **order** matters!

Road map

- ▶ Algebraic optimality condition.
- ► The simplex method.
- ▶ More about the simplex method.

The simplex method

▶ We now consider solving a standard form LP

$$(P) \quad \begin{array}{l} \min \quad c^T x \\ \text{s.t.} \quad Ax = b \\ x \ge 0. \end{array}$$

- We may assumed that rank A = m WLOG.
 - ▶ Otherwise, we can just remove those redundant constraints.
- ▶ The simplex method proceeds as follows: Given a basic feasible solution $x = (x_B, x_N)$ in each iteration, try to move to another strictly better basic feasible solution (i.e., one with a strictly lower objective value).
 - ▶ Greedy search: A local minimum is a global minimum.
 - Search among extreme points only.
- How to do it **algebraically**?

The reduced form

• First, we rewrite (P) as

min
$$c_B^T x_B + c_N^T x_N$$

s.t. $A_B x_B + A_N x_N = b$
 $x_B, x_N \ge 0.$

Because

$$A_B x_B + A_N x_N = b$$

$$\Leftrightarrow x_B = A_B^{-1} (b - A_N x_N) = A_B^{-1} b - A_B^{-1} A_N x_N,$$

(P) can be further reduced to (P^\prime) :

min
$$c_B^T A_B^{-1} b + (c_N^T - c_B^T A_B^{-1} A_N) x_N$$

s.t. $A_B^{-1} b - A_B^{-1} A_N x_N \ge 0, \ x_N \ge 0$

c̄_N = c^T_N − c^T_BA⁻¹_BA_N is the reduced costs of the nonbasic set N.
 Recall that x_N = 0. Therefore, c^T_BA⁻¹_Bb is the objective value of B.

Making an improvement

min
$$c_B^T A_B^{-1} b + (c_N^T - c_B^T A_B^{-1} A_N) x_N$$

s.t. $A_B^{-1} b - A_B^{-1} A_N x_N \ge 0, \ x_N \ge 0$

▶ Looking at the objective function. If there exists $j \in N$ such that the reduced cost

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j < 0,$$

we can **increase** x_j (which is a nonbasic variable and is 0 currently) to lower the objective value.

- We should keep increasing x_j as long as we satisfy the constraints.
 - Obviously, $x'_N \ge 0$ will still be satisfied.
 - How to check $x'_B = A_B^{-1}b A_B^{-1}A_N x'_N = A_B^{-1}b A_B^{-1}A_j x'_j \ge 0$?

When to stop?

$$\begin{array}{ll} \min & c_B^T A_B^{-1} b + (c_N^T - c_B^T A_B^{-1} A_N) x_N \\ \text{s.t.} & A_B^{-1} b - A_B^{-1} A_N x_N \geq 0, \ x_N \geq 0 \end{array}$$

• Let $\overline{b} = A_B^{-1}b \ge 0$ and $d = A_B^{-1}A_j$, then

$$\begin{aligned} x'_B &= \bar{b} - x'_j d = \begin{bmatrix} + \\ + \\ + \\ + \end{bmatrix} - x'_j \begin{bmatrix} + \\ - \\ 0 \\ + \end{bmatrix} \ge 0 \\ \Leftrightarrow \alpha^* &= \min_{i \in B} \left\{ \frac{\bar{b}_i}{d_i} \middle| d_i > 0 \right\} \text{ and } x'_j \in [0, \alpha^*]. \end{aligned}$$

• We will increase x_j to $x'_j = \alpha^*$.

• This will make x_l becomes $x'_l = 0$, where

$$l \in \operatorname*{argmin}_{i \in B} \left\{ \frac{\bar{b}_i}{d_i} \middle| d_i > 0 \right\}.$$

Entering and leaving variables

min
$$c_B^T A_B^{-1} b + (c_N^T - c_B^T A_B^{-1} A_N) x_N$$

s.t. $A_B^{-1} b - A_B^{-1} A_N x_N \ge 0, \ x_N \ge 0$

• We have chosen to increase x_j , where its reduced cost

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j < 0.$$

• We stop when $x_j = \alpha^*$, where

$$l \in \operatorname*{argmin}_{i \in B} \left\{ rac{ar{b}_i}{d_i} \middle| d_i > 0
ight\} \quad ext{and} \quad lpha^* = rac{ar{b}_l}{d_l}.$$

• Originally, $x_j = 0$ and $x_l > 0$. Now $x_j > 0$ and $x_l = 0$.¹

- We say that x_j enters the basis and x_l leaves the basis.
 - x_j is the entering variable.
 - x_l is the **leaving variable**.

¹If $\bar{b}_l = 0$, $x_j = 0$. we will ignore such a degenerate case in this lecture.

The algorithm

▶ The simplex method can now be summarized below:

(Initialization) Input a basic feasible solution (x_B, x_N) , where $x_B = A_B^{-1}b \ge 0$ and $x_N = 0$.

- 1. (Entering) Let $\bar{c}_N = c_N c_B^T A_B^{-1} A_N$. 1.1 If for all $j \in N$ we have $\bar{c}_j \ge 0$, (x_B, x_N) is optimal and we stop.² 1.2 Otherwise, pick an x_j with $\bar{c}_j < 0$.
- 2. (Leaving) Let $d = A_B^{-1} A_j$ and $\alpha^* = \min_{i \in B} \{ \frac{\overline{b}_i}{d_i} | d_i > 0 \}$ where $\overline{b} = A_B^{-1} b$.
 - 2.1 If for all $i \in B$ we have $d_i \leq 0$, the problem is unbounded and we stop.
 - 2.2 Otherwise, let $l \in \operatorname{argmin}_{i \in B} \{\frac{b_i}{d_i} | d_i > 0\}$, set $x_l = 0$, set $x_j = \alpha^*$, replace B by $B \cup \{j\} \setminus \{l\}$, and replace N by $N \cup \{l\} \setminus \{j\}$. Go to 1 and repeat.
- ▶ Remaining questions:
 - ▶ How to find an initial basic feasible solution?
 - Is A_B always invertible?
 - ▶ How to select an entering/leaving variable among multiple candidates?

²Because a local minimum is a global minimum.

An example

▶ Consider the LP

• (Initialization) If $B = \{1, 2\}$ and $N = \{3, 4\}$, we have

$$A_B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}, A_N = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}, x_B = A_B^{-1}b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, x_N = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

So $x^0 = (1, 1, 0, 0)$ can be an initial basic feasible solution.

• (Iteration 1) Compute $\bar{c}_N^T = c_N^T - c_B^T A_B^{-1} A_N$ as

$$\begin{bmatrix} \bar{c}_3 & \bar{c}_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & \frac{1}{2} \\ 1 & \frac{-1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -3 & -4 \end{bmatrix} < 0.$$

Let's enter x_3 .

An example

▶ (Iteration 1 continued) Now we have

$$x'_{B} = A_{B}^{-1}b - A_{B}^{-1}A_{3}x'_{3} = \begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} \frac{3}{2}\\-\frac{1}{2} \end{bmatrix} x'_{3}.$$

Since only $\frac{3}{2} > 0$, we let $x'_3 = \frac{1}{\frac{3}{2}} = \frac{2}{3}$ and $x'_1 = 0$. The current solution $x^1 = (0, \frac{4}{3}, \frac{2}{3}, 0)$ is better (why $x_2 = \frac{4}{3}$?)

• (Iteration 2) Now, $B = \{3, 2\}, N = \{1, 4\}, \text{ and}^3$

$$\bar{c}_N^T = \begin{bmatrix} \bar{c}_1 & \bar{c}_4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \end{bmatrix} \ge 0.$$

Therefore, the current solution $x^1 = (0, \frac{4}{3}, \frac{2}{3}, 0)$ is optimal.

³Keep an eye on how the columns of A_B and A_N are ordered. Those orders must be consistent with those of c_B and c_N !

Road map

- ▶ Algebraic optimality condition.
- ▶ The simplex method.
- More about the simplex method.
 - ▶ Finding an initial basic feasible solution.
 - The invertiability of A_B .
 - ▶ The rule for selecting entering/leaving variable.

Optimization, Fall 2013 – The Simplex Method \bigsqcup More about the method

Initial basic feasible solution

- ► To find an initial basic feasible solution (or show that there is none), we may apply the **two-phase method**.
- Given (P), we construct a phase-I LP (Q):⁴

$$\begin{array}{cccc} \min & c^T x & \min & 1^T y \\ (P) & \text{s.t.} & Ax = b & & (Q) & \text{s.t.} & Ax + Iy = b \\ & & & x \ge 0 & & & x, y \ge 0. \end{array}$$

- (Q) has a basic feasible solution (x, y) = (0, b), so we can apply the simplex method on (Q).
- Key: (P) is **feasible** if and only if (Q) has an optimal objective value 0.
- After we solve (Q), either we know (P) is infeasible or the optimal solution for (Q), $(\bar{x}, \bar{y}) = (\bar{x}, 0)$, gives up a basic feasible solution for (P), \bar{x} .
- Then we can apply the simplex method to (P).

⁴Even if in (P) we have a maximization objective function, (Q) is still the same.

Example

- ► To find an initial basic feasible solution (or show that there is none), we may apply the **two-phase method**.
- Given (P), we construct a phase-I LP (Q):

$$\begin{array}{cccc} \min & c^T x & \min & 1^T y \\ (P) & \text{s.t.} & Ax = b & & & & \\ & x \ge 0 & & & & x, y \ge 0. \end{array}$$

- (Q) has a basic feasible solution (x, y) = (0, b), so we can apply the simplex method on (Q).
- (P) is feasible if and only if (Q) has an optimal value 0.
- After we solve (Q), either we know (P) is infeasible or the optimal solution for (Q), $(\bar{x}, \bar{y}) = (\bar{x}, 0)$, gives up a basic feasible solution for (P), \bar{x} .
- Then we can apply the simplex method to (P).

Optimization, Fall 2013 – The Simplex Method \square More about the method

Invertiability of the basic matrix

- At each iteration, we replace the column A_l in A_B by A_j to get A'_B .
- Is such A'_B still **nonsingular**?
 - With A_j , we do $d = A_B^{-1} A_j$ and $l = \operatorname{argmin}_i \{ \frac{\overline{b}_i}{d_i} : d_i > 0 \}$ to get A_l .

$$\bullet \ d = A_B^{-1} A_j \Leftrightarrow A_j = A_B d.$$

▶ So we can write

$$A'_{B} = \begin{bmatrix} | & | & | & | & | & | & | & | \\ A_{1} & \cdots & A_{l-1} & A_{j} & A_{l+1} & \cdots & A_{m} \\ | & | & | & | & | & | & | \end{bmatrix} = A_{B}I_{ld},$$

where

-

• det $A'_B = \det A_B \det I_{ld}$, so det $A'_B \neq 0$ if and only if det $I_{ld} \neq 0$.

▶ By $d_l > 0$ (why?), we know det $I_{ld} \neq 0$, so A'_B is nonsingular.

Degeneracy

- ▶ Why is variable selection rule important?
- ▶ In general, an LP may be **degenerate**.

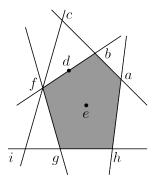
Definition 5

A basic solution \bar{x} is degenerate if there are more than n binding constraints of \bar{x} .

Definition 6

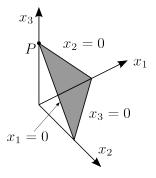
An LP is degenerate if there is at least one degenerate basic feasible solution.

▶ What may happen when we run the simplex method to a degenerate LP?



Feasible region of standard form LPs

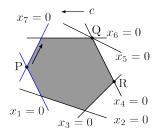
- ▶ Let's become more familiar with constraints in a standard-form LP first.
- ▶ For a standard form LP with A being 1 × 3, there are three variables and one constraint.
 - ► Each side of this triangle can be expressed by a nonnegativity constraint x_i = 0.
- At P, the nonbasic set is $N = \{1, 2\}$.
 - At each basic feasible solution, $j \in N$ means that $x_j \ge 0$ is binding.
- When we run the simplex method on standard form LPs, we move along edges.
 - ► We move along binding nonnegativity constraints.



Optimization, Fall 2013 – The Simplex Method \bigsqcup More about the method

No improvement in an iteration

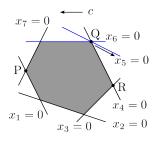
- In this example, A is 5×7 .
- ▶ The optimal solution is point R.
- ▶ The initial basic feasible solution is point P.
 - At point P, the two binding constraints are $x_1 \ge 0$ and $x_7 \ge 0$.
 - Moving along either one is improving.
 - Suppose we move along $x_7 \ge 0$.
- We stop when we hit $x_6 \ge 0$.
 - x_1 enters and x_6 leaves.
 - The set of binding constraints becomes $x_6 \ge 0$ and $x_7 \ge 0$.
 - Only moving along $x_6 \ge 0$ is improving.
- ▶ We stop when we hit... what?



Optimization, Fall 2013 – The Simplex Method \bigsqcup More about the method

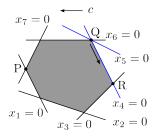
No improvement in an iteration

- If we move along $x_6 \ge 0$, we arrive point Q.
- We hit **two** constraints **at the same time**.
 - We hit both $x_4 \ge 0$ and $x_5 \ge 0$.
 - In simplex, we will choose one of them into the set of binding constraints.
- If we (unluckily) choose to include $x_5 \ge 0$:
 - x_7 enters and x_5 leaves.
 - At this moment, $x_4 = 0$ is treated as basic.
- We now may move along $x_6 \ge 0$ or $x_5 \ge 0$.
 - Moving along $x_6 \ge 0$ is not improving.
 - Moving along $x_5 \ge 0$ is improving.
- However, we hit $x_4 \ge 0$ immediately!
 - ▶ In this iteration, we move "from Q to Q".
 - It is possible to have **no improvement** in a simplex iteration.



No improvement in an iteration

- We hit $x_4 \ge 0$ when we move along $x_5 \ge 0$.
 - So the set of binding constraints becomes $x_5 \ge 0$ and $x_4 \ge 0$.
 - x_6 enters and x_4 leaves.
- We may now move along $x_4 \ge 0$ and move to the optimal point R.
- ► In general, we may get stock at a basic feasible solution forever!
 - ▶ When we do not apply a "good" variable selection rule.



Variable selection rule

▶ To guarantee that the simplex terminates, we need a well-designed variable selection rule.

Proposition 3 (The smallest index rule)

Using the following rule guarantees to solve an LP in finite steps:

- Among nonbasic variables with $\bar{c}_j < 0$, pick the one with the smallest index to enter the basis.
- Among basic variables that minimizes $\frac{b_i}{d_i}$, pick the one with smallest index to exist.