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Introduction

I Last time we have shown that “if there is an optimal solution, there is
an extreme point optimal solution.”

I Formally, we have the following:

Proposition 1 (Optimality of extreme points)

Let P be a nonempty polyhedron with at least one extreme point. If
min{cTx|x ∈ P} has an optimal solution, then it has an optimal
solution that is an extreme point of P .

I So we only need to focus on extreme points.

I How to list all extreme points?

I How to (let a computer) verify that a point is an extreme point?

I A geometric optimality condition is not enough; we need an
algebraic optimality condition.
I Based on that, we may construct our algorithm: the simplex method.
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Algebraic optimality condition

Road map

I Algebraic optimality condition.

I The simplex method.

I More about the simplex method.
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Algebraic optimality condition

Canonical and standard form LPs

I An LP

min cTx

s.t. Ax ≤ b

is in the canonical form.

I An LP

min cTx

s.t. Ax = b

x ≥ 0

is in the standard form.
I They are equivalent:

min cTx
s.t. Ax ≤ b ⇒

min cTx+ − cTx−
s.t. Ax+ −Ax− + Is = b

x+, x−, s ≥ 0, s ∈ Rm

and
min cTx
s.t. Ax = b

x ≥ 0
⇒

min cTx

s.t.

 A
−A
−I

x ≤
 b
−b
0

 .
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Algebraic optimality condition

Binding constraints
I Consider an LP min{cTx|x ∈ P} with P = {x ∈ Rn|Ax ≤ b} for some
m× n matrix A. We will assume that m ≥ n.

Definition 1 (Binding constraint)

Given x̄ ∈ Rn and a constraint aTx ≤ b, we say the constraint is
binding or active at x̄ if aT x̄ = b.
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Algebraic optimality condition

Basic solutions

Definition 2 (Basic solution)

x̄ ∈ Rn is a basic solution of P if there exist
n linearly independent constraints that are
binding at x̄.

Definition 3 (Basic feasible solution)

x̄ ∈ Rn is a basic feasible solution of P if it
is basic and feasible.
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Algebraic optimality condition

Optimality of basic feasible solutions

Proposition 2 (Optimality of basic feasible solutions)

Let P = {x ∈ Rn|Ax ≤ b}. x̄ ∈ P is a basic feasible solution of P if
and only if x̄ is an extreme point of P .

Proof. (⇒) Suppose x̄ is a bfs of P , then there exist n linearly

independent binding constraints. Let’s partition A into

[
A=

A<

]
such

that

[
A=

A<

]
x̄ =

[
b=

b<

]
< b, then A= has at least n rows. In

addition, we know that there exists an n× n nonsingular Ã which is a
submatrix of A=. Suppose there exist x1, x2 ∈ P such that x1 6= x2

and x̄ = λx1 + (1− λ)x2 for some λ ∈ (0, 1), then

b̃ = Ãx̄ = λÃx1 + (1− λ)Ãx2 ≤ λb̃+ (1− λ)b̃ = b̃,

so b̃ = Ãx1 = Ãx2. Then the nonsingularity of Ã implies that
x1 = x2, which is a contradiction.
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Algebraic optimality condition

Optimality of basic feasible solutions

Proof continued. (⇐) Recall that we partition A into

[
A=

A<

]
such

that [
A=

A<

]
x̄ =

[
b=

b<

]
< b.

Suppose x̄ is not a bfs, then rank A= < n, i.e., dimN (A=) > 0. Let
0 6= y ∈ N (A=), i.e., y 6= 0, A=y = 0; also let x1 = x̄+ εy, x2 = x̄− εy
for some ε > 0. Then

A=x1 = A=(x̄+ εy) = A=x̄+ εA=y = A=x̄

and
A<x1 = A<(x̄+ εy) = A<x̄+ εA<y = b< + εA<y < b

for ε sufficiently small. So x1 ∈ P . Similarly, x2 ∈ P , and thus
x̄ = 1

2x
1 + 1

2x
2. As y 6= 0, we know x1 6= x2. Therefore, x̄ is not an

extreme point.
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Algebraic optimality condition

Enumerating basic feasible solutions

I Now we only need to list all basic feasible solutions.

I Checking whether a point is a basic feasible solution is easy.

I Enumerating all of them can also be done systematically.
I Pick n constraints out of the m ones.
I Check whether they are linearly independent (how?).
I Set them to binding and find a basic solution (how?).
I Check whether it is feasible.

I However, this is impractical!
I There are

(
m
n

)
distinct ways of selecting constraints. Still too many!

I It is uneasy to deal with infeasible and unbounded LPs.

I We need a “clever way” to search among basic feasible solutions.
I The simplex method is the clever way.
I It is for standard form LPs.
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Algebraic optimality condition

Basic feasible solutions for standard form LPs
I Consider a standard form LP

(P )
min cTx
s.t. Ax = b (m equalities)

x ≥ 0 (n inequalities).

Definition 4 (Basic solutions for standard form LPs)

x̄ ∈ Rn is a basic solution of (P ) if there exists a partition of A into
[AB AN ] and of x̄ into (x̄B , x̄N ) such that AB is a nonsingular m×m
matrix, x̄B = A−1B b, and x̄N = 0.

I Among the n inequalities, select n−m of them to be binding.

I Among the n variables, select m of them to be basic:
I Variables xis, i ∈ B, are basic variables.
I Variables xjs, j ∈ N , are nonbasic variables. xj = 0 for all j ∈ N .
I B is called the basis of the basic solution.

I Note that x̄ = (x̄B , x̄N ) is a basic feasible solution if x̄B = A−1B b ≥ 0.
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Algebraic optimality condition

Basic feasible solutions for standard form LPs

I As an example, consider a standard form LP with

A =

[
1 1 0
0 −1 1

]
and b =

[
3
−1

]
.

I There are three ways of selecting m = 2 basic variables out of the
n = 3 variables:

I Let B = {1, 2}, N = {3}, then AB =

[
1 1
0 −1

]
, AN =

[
0
1

]
,

A−1
B b = (x1, x2) = (2, 1), x3 = 0. We then have x̄ = (2, 1, 0) as a basic

feasible solution.
I Let B = {2, 3}, N = {1}, then x̄ = (0, 3, 2) is a basic feasible solution.
I Let B = {1, 3}, N = {2}, then x̄ = (3, 0,−1) � 0 is not a basic feasible

solution.

I The order matters!
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The simplex method

Road map

I Algebraic optimality condition.

I The simplex method.

I More about the simplex method.
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The simplex method

The simplex method

I We now consider solving a standard form LP

(P )
min cTx
s.t. Ax = b

x ≥ 0.

I We may assumed that rank A = m WLOG.
I Otherwise, we can just remove those redundant constraints.

I The simplex method proceeds as follows: Given a basic feasible
solution x = (xB , xN ) in each iteration, try to move to another
strictly better basic feasible solution (i.e., one with a strictly lower
objective value).
I Greedy search: A local minimum is a global minimum.
I Search among extreme points only.

I How to do it algebraically?
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The simplex method

The reduced form
I First, we rewrite (P ) as

min cTBxB + cTNxN

s.t. ABxB +ANxN = b

xB , xN ≥ 0.

Because

ABxB +ANxN = b

⇔ xB = A−1B (b−ANxN ) = A−1B b−A−1B ANxN ,

(P ) can be further reduced to (P ′):

min cTBA
−1
B b+ (cTN − cTBA−1B AN )xN

s.t. A−1B b−A−1B ANxN ≥ 0, xN ≥ 0.

I c̄N = cTN − cTBA
−1
B AN is the reduced costs of the nonbasic set N .

I Recall that xN = 0. Therefore, cTBA
−1
B b is the objective value of B.
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The simplex method

Making an improvement

min cTBA
−1
B b+ (cTN − c

T
BA
−1
B AN )xN

s.t. A−1
B b−A−1

B ANxN ≥ 0, xN ≥ 0

I Looking at the objective function. If there exists j ∈ N such that the
reduced cost

c̄j = cj − cTBA−1B Aj < 0,

we can increase xj (which is a nonbasic variable and is 0 currently) to
lower the objective value.

I We should keep increasing xj as long as we satisfy the constraints.

I Obviously, x′N ≥ 0 will still be satisfied.
I How to check x′B = A−1

B b−A−1
B ANx

′
N = A−1

B b−A−1
B Ajx

′
j ≥ 0?
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The simplex method

When to stop?

min cTBA
−1
B b+ (cTN − c

T
BA
−1
B AN )xN

s.t. A−1
B b−A−1

B ANxN ≥ 0, xN ≥ 0

I Let b̄ = A−1B b ≥ 0 and d = A−1B Aj , then

x′B = b̄− x′jd =


+
+
+
+

− x′j


+
−
0
+

 ≥ 0

⇔ α∗ = min
i∈B

{
b̄i
di

∣∣∣∣di > 0

}
and x′j ∈ [0, α∗].

I We will increase xj to x′j = α∗.

I This will make xl becomes x′l = 0, where

l ∈ argmin
i∈B

{
b̄i
di

∣∣∣∣di > 0

}
.
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The simplex method

Entering and leaving variables

min cTBA
−1
B b+ (cTN − c

T
BA
−1
B AN )xN

s.t. A−1
B b−A−1

B ANxN ≥ 0, xN ≥ 0

I We have chosen to increase xj , where its reduced cost

c̄j = cj − cTBA−1B Aj < 0.

I We stop when xj = α∗, where

l ∈ argmin
i∈B

{
b̄i
di

∣∣∣∣di > 0

}
and α∗ =

b̄l
dl
.

I Originally, xj = 0 and xl > 0. Now xj > 0 and xl = 0.1

I We say that xj enters the basis and xl leaves the basis.
I xj is the entering variable.
I xl is the leaving variable.

1If b̄l = 0, xj = 0. we will ignore such a degenerate case in this lecture.
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The simplex method

The algorithm

I The simplex method can now be summarized below:

(Initialization) Input a basic feasible solution (xB , xN ), where
xB = A−1B b ≥ 0 and xN = 0.

1. (Entering) Let c̄N = cN − cTBA−1
B AN .

1.1 If for all j ∈ N we have c̄j ≥ 0, (xB , xN ) is optimal and we stop.2

1.2 Otherwise, pick an xj with c̄j < 0.

2. (Leaving) Let d = A−1
B Aj and α∗ = mini∈B{ b̄i

di
|di > 0} where b̄ = A−1

B b.

2.1 If for all i ∈ B we have di ≤ 0, the problem is unbounded and we stop.

2.2 Otherwise, let l ∈ argmini∈B{
b̄i
di
|di > 0}, set xl = 0, set xj = α∗, replace

B by B ∪ {j} \ {l}, and replace N by N ∪ {l} \ {j}. Go to 1 and repeat.

I Remaining questions:
I How to find an initial basic feasible solution?
I Is AB always invertible?
I How to select an entering/leaving variable among multiple candidates?

2Because a local minimum is a global minimum.
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The simplex method

An example

I Consider the LP

min
s.t.

2x1
x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

x1, x2, x3, x4 ≥ 0.

I (Initialization) If B = {1, 2} and N = {3, 4}, we have

AB =

[
1 1
2 0

]
, AN =

[
1 1
3 4

]
, xB = A−1B b =

[
1
1

]
, xN =

[
0
0

]
.

So x0 = (1, 1, 0, 0) can be an initial basic feasible solution.

I (Iteration 1) Compute c̄TN = cTN − cTBA
−1
B AN as

[
c̄3 c̄4

]
=
[

0 0
]
−
[

2 0
] [ 0 1

2

1 −1
2

] [
1 1
3 4

]
=
[
−3 −4

]
< 0.

Let’s enter x3.
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The simplex method

An example

I (Iteration 1 continued) Now we have

x′B = A−1B b−A−1B A3x
′
3 =

[
1
1

]
−
[

3
2
− 1

2

]
x′3.

Since only 3
2 > 0, we let x′3 = 1

3
2

= 2
3 and x′1 = 0. The current solution

x1 = (0, 43 ,
2
3 , 0) is better (why x2 = 4

3?)

I (Iteration 2) Now, B = {3, 2}, N = {1, 4}, and3

c̄TN =
[
c̄1 c̄4

]
=
[

2 0
]
−
[

0 0
] [ 1 1

3 0

]−1 [
1 1
2 4

]
=
[

2 0
]
≥ 0.

Therefore, the current solution x1 = (0, 43 ,
2
3 , 0) is optimal.

3Keep an eye on how the columns of AB and AN are ordered. Those orders
must be consistent with those of cB and cN !
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More about the method

Road map

I Algebraic optimality condition.

I The simplex method.

I More about the simplex method.
I Finding an initial basic feasible solution.
I The invertiability of AB .
I The rule for selecting entering/leaving variable.
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More about the method

Initial basic feasible solution

I To find an initial basic feasible solution (or show that there is none),
we may apply the two-phase method.

I Given (P ), we construct a phase-I LP (Q):4

(P )
min cTx
s.t. Ax = b

x ≥ 0
(Q)

min 1T y
s.t. Ax+ Iy = b

x, y ≥ 0.

I (Q) has a basic feasible solution (x, y) = (0, b), so we can apply the
simplex method on (Q).

I Key: (P ) is feasible if and only if (Q) has an optimal objective value 0.

I After we solve (Q), either we know (P ) is infeasible or the optimal
solution for (Q), (x̄, ȳ) = (x̄, 0), gives up a basic feasible solution for
(P ), x̄.

I Then we can apply the simplex method to (P ).

4Even if in (P ) we have a maximization objective function, (Q) is still the same.
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More about the method

Example

I To find an initial basic feasible solution (or show that there is none),
we may apply the two-phase method.

I Given (P ), we construct a phase-I LP (Q):

(P )
min cTx
s.t. Ax = b

x ≥ 0
(Q)

min 1T y
s.t. Ax+ Iy = b

x, y ≥ 0.

I (Q) has a basic feasible solution (x, y) = (0, b), so we can apply the
simplex method on (Q).

I (P ) is feasible if and only if (Q) has an optimal value 0.

I After we solve (Q), either we know (P ) is infeasible or the optimal
solution for (Q), (x̄, ȳ) = (x̄, 0), gives up a basic feasible solution for
(P ), x̄.

I Then we can apply the simplex method to (P ).
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More about the method

Invertiability of the basic matrix

I At each iteration, we replace the column Al in AB by Aj to get A′B .

I Is such A′B still nonsingular?

I With Aj , we do d = A−1
B Aj and l = argmini{

b̄i
di

: di > 0} to get Al.

I d = A−1
B Aj ⇔ Aj = ABd.

I So we can write

A′B =

 | | | | | | |
A1 · · · Al−1 Aj Al+1 · · · Am

| | | | | | |

 = ABIld,

where

Ild =

 | | | | | | |
e1 · · · el−1 d el+1 · · · em
| | | | | | |

 .
I detA′B = detAB det Ild, so detA′B 6= 0 if and only if det Ild 6= 0.
I By dl > 0 (why?), we know det Ild 6= 0, so A′B is nonsingular.
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More about the method

Degeneracy

I Why is variable selection rule important?

I In general, an LP may be degenerate.

Definition 5

A basic solution x̄ is degenerate if there are
more than n binding constraints of x̄.

Definition 6

An LP is degenerate if there is at least one
degenerate basic feasible solution.

I What may happen when we run the simplex
method to a degenerate LP?
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More about the method

Feasible region of standard form LPs

I Let’s become more familiar with constraints
in a standard-form LP first.

I For a standard form LP with A being 1× 3,
there are three variables and one constraint.
I Each side of this triangle can be expressed by

a nonnegativity constraint xi = 0.

I At P , the nonbasic set is N = {1, 2}.
I At each basic feasible solution, j ∈ N means

that xj ≥ 0 is binding.

I When we run the simplex method on
standard form LPs, we move along edges.
I We move along binding nonnegativity

constraints.
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More about the method

No improvement in an iteration

I In this example, A is 5× 7.

I The optimal solution is point R.

I The initial basic feasible solution is point P.
I At point P, the two binding constraints are
x1 ≥ 0 and x7 ≥ 0.

I Moving along either one is improving.
I Suppose we move along x7 ≥ 0.

I We stop when we hit x6 ≥ 0.
I x1 enters and x6 leaves.
I The set of binding constraints becomes x6 ≥ 0

and x7 ≥ 0.
I Only moving along x6 ≥ 0 is improving.

I We stop when we hit... what?
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More about the method

No improvement in an iteration

I If we move along x6 ≥ 0, we arrive point Q.

I We hit two constraints at the same time.
I We hit both x4 ≥ 0 and x5 ≥ 0.
I In simplex, we will choose one of them into

the set of binding constraints.

I If we (unluckily) choose to include x5 ≥ 0:
I x7 enters and x5 leaves.
I At this moment, x4 = 0 is treated as basic.

I We now may move along x6 ≥ 0 or x5 ≥ 0.
I Moving along x6 ≥ 0 is not improving.
I Moving along x5 ≥ 0 is improving.

I However, we hit x4 ≥ 0 immediately!
I In this iteration, we move “from Q to Q”.
I It is possible to have no improvement in a

simplex iteration.
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More about the method

No improvement in an iteration

I We hit x4 ≥ 0 when we move along x5 ≥ 0.
I So the set of binding constraints becomes
x5 ≥ 0 and x4 ≥ 0.

I x6 enters and x4 leaves.

I We may now move along x4 ≥ 0 and move to
the optimal point R.

I In general, we may get stock at a basic
feasible solution forever!
I When we do not apply a “good” variable

selection rule.
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More about the method

Variable selection rule

I To guarantee that the simplex terminates, we need a well-designed
variable selection rule.

Proposition 3 (The smallest index rule)

Using the following rule guarantees to solve an LP in finite steps:
I Among nonbasic variables with c̄j < 0, pick the one with the smallest

index to enter the basis.
I Among basic variables that minimizes b̄i

di
, pick the one with smallest

index to exist.
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