
Optimization, Fall 2013 – Integer Programming 1 / 57

MBA 8023: Optimization
Integer Programming

Ling-Chieh Kung

Department of Information Management
National Taiwan University

November 25, 2013

Optimization, Fall 2013 – Integer Programming 2 / 57

IP formulation

Road map

I Integer programming formulation.

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

Optimization, Fall 2013 – Integer Programming 3 / 57

IP formulation

Integer programming formulation

I In some cases, when variables should only take integer values, we apply
integer programming.

I Moreover, we may introduce integer variables (mostly binary
variables) to enrich our formulation and model more complicated
situations.

I Here we will study some widely adopted integer programming
formulation techniques.

Optimization, Fall 2013 – Integer Programming 4 / 57

IP formulation

The knapsack problem

I We start our illustration with the classic knapsack problem.

I There are four items to select:

Item 1 2 3 4

Value ($) 16 22 12 8
Weight(kg) 5 7 4 3

I The knapsack capacity is 10 kg.

I We want to maximize the total value without exceeding the knapsack
capacity.

Optimization, Fall 2013 – Integer Programming 5 / 57

IP formulation

The knapsack problem: basic formulation
I Let the decision variables be

xi =

{
1 if item i is selected
0 o/w

.

I The knapsack constraint:

5x1 + 7x2 + 4x3 + 3x4 ≤ 10.

I The objective function:

max 16x1 + 22x2 + 12x3 + 8x4.

I The complete formulation:

max
s.t.

16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 10

xi ∈ {0, 1} ∀i = 1, ..., 4.

Optimization, Fall 2013 – Integer Programming 6 / 57

IP formulation

Some more requirements

I Integer programming allows us to implement some special selection
rules.

I At least/most some items:
I Suppose we must select at least one item among items 2, 3, and 4:

x2 + x3 + x4 ≥ 1.

I Suppose we must select at most two items among items 1, 3, and 4:

x1 + x3 + x4 ≤ 2

Optimization, Fall 2013 – Integer Programming 7 / 57

IP formulation

Some more requirements

I Or:
I Select item 2 or item 3:

x2 + x3 ≥ 1.

I Select item 2, otherwise, items 3 and 4 togehter:

2x2 + x3 + x4 ≥ 2.

I If-else:
I If item 2 is not selected, do not select item 3:

x2 ≥ x3.

I If item 1 is selected, do not select items 3 and 4:

2(1− x1) ≥ x3 + x4.

Optimization, Fall 2013 – Integer Programming 8 / 57

IP formulation

Fixed-charge constraints

I Consider the following example:

I n factories, 1 market, 1 product.
I Capacity of factory i: Ki.
I Unit production cost at factory i: Ci.
I Setup cost at factory i: Si.
I Demand: D.
I We want to satisfy the demand with the

minimum cost.

I One needs to pay the setup cost as long
as any positive amount of products is
produced.

Optimization, Fall 2013 – Integer Programming 9 / 57

IP formulation

Basic formulation
I Let the decision variables be

xi = production quantity at factory i, i = 1, ..., n,

yi =

{
1 if some products are produced at factory i, i = 1, ..., n.
0 otherwise.

I Objective function:

min

n∑
i=1

Cixi +

n∑
i=1

Siyi.

I Capacity limitation:

xi ≤ Ki ∀i = 1, ..., n.

I Demand fulfillment:
n∑

i=1

xi ≥ D.

Optimization, Fall 2013 – Integer Programming 10 / 57

IP formulation

Setup costs

I How may we know whether we need to pay the setup cost at factory i?
I If xi > 0, yi must be 1; if xi = 0, yi should be 0.

I So the relationship between xi and yi should be:

xi ≤ Kiyi ∀i = 1, ..., n.

I If xi > 0, yi cannot be 0.
I If xi = 0, yi can be 0 or 1. Why yi will always be 0 when xi = 0?

I Finally, binary and nonnegative constraints:

xi ≥ 0, yi ∈ {0, 1} ∀i = 1, ..., n.

Optimization, Fall 2013 – Integer Programming 11 / 57

IP formulation

Fixed-charge constraints

I The setup cost constraint xi ≤ Kiyi is known as a
fixed-charge constraint.

I In general, a fixed-charge constraint is

x ≤My.

I Both x and y are decision variables.
I y ∈ {0, 1} is determined by x.
I M is a large enough constant.
I When x is binary, x ≤ y is sufficient.

I We need to make M an upper bound of x.
I For example, Ki is an upper bound of xi in the factory example. Why?
I What if there is no capacity limitation?

Optimization, Fall 2013 – Integer Programming 12 / 57

IP formulation

At least/most some constraints

I Using a similar technique, we may flexibly select constraints.

I Suppose satisfying one of the two constraints

g1(x) ≤ b1 and g2(x) ≤ b2

is enough. How to formulate this situation?

I Let’s define a binary variable

z =

{
0 if g1(x) ≤ b1 is satisfied,
1 if g2(x) ≤ b2 is satisfied.

I With Mi being an upper bound of each LHS, the following two
constraints are what we need!

g1(x)− b1 ≤M1z

g2(x)− b2 ≤M2(1− z)

Optimization, Fall 2013 – Integer Programming 13 / 57

IP formulation

At least/most some constraints

I Suppose at least two of the three constraints

gi(x) ≤ bi, i = 1, 2, 3,

must be satisfied. How to play the same trick?

I Let

zi =

{
1 if gi(x) ≤ bi must be satisfied,
0 if gi(x) ≤ bi may not be satisfied.

I With Mi being an upper bound of each LHS, the following constraints
are what we need:

gi(x)− bi ≤Mi(1− zi) ∀i = 1, ..., 3.

z1 + z2 + z3 ≥ 2.

Optimization, Fall 2013 – Integer Programming 14 / 57

IP formulation

If-else constraints

I In some cases, if g1(x) > b1 is satisfied, then g2(x) ≤ b2 must also be
satisfied.

I How to model this situation?
I First, note that “if A then B” ⇔ “(not A) or B”.
I So what we really want to do is g1(x) ≤ b1 or g2(x) ≤ b2.
I So simply select at least one of g1(x) ≤ b1 and g2(x) ≤ b2!

Optimization, Fall 2013 – Integer Programming 15 / 57

Linear relaxation

Road map

I Integer programming formulation.

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

Optimization, Fall 2013 – Integer Programming 16 / 57

Linear relaxation

Solving an integer program

I Suppose we are given an integer program, how may we solve it?

I The simplex method certainly does not work!
I The feasible region is not “a” region.
I It is not convex. In fact, it is discrete.
I There is no way to “move along edges”.

I But all we know is how to solve linear programs by the simplex
method. How about solving a linear relaxation first?

Definition 1

For a given integer program, its linear relaxation is the resulting
linear program after removing all the integer constraints.

Optimization, Fall 2013 – Integer Programming 17 / 57

Linear relaxation

Linear relaxation

I What is the linear relaxation of

max
s.t.

x1 + x2

x1 + 3x2 ≤ 10
2x1 − x2 ≥ 5

xi ∈ Z+ ∀i = 1, 2?

I Z is the set of all integers. Z+ is the set of all nonnegative integers.

I The linear relaxation is

max
s.t.

x1 + x2

x1 + 3x2 ≤ 10
2x1 − x2 ≥ 5

xi ≥ 0 ∀i = 1, 2.

Optimization, Fall 2013 – Integer Programming 18 / 57

Linear relaxation

Linear relaxation

I For the knapsack problem

max
s.t.

16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 10

xi ∈ {0, 1} ∀i = 1, ..., 4,

the linear relaxation is

max
s.t.

16x1 + 22x2 + 12x3 + 8x4

5x1 + 7x2 + 4x3 + 3x4 ≤ 10

xi ∈ [0, 1] ∀i = 1, ..., 4,

I xi ∈ [0, 1] is equivalent to xi ≥ 0 and xi ≤ 1.

Optimization, Fall 2013 – Integer Programming 19 / 57

Linear relaxation

Linear relaxation provides a bound

I What kind of relationship do we have between an integer program and
its linear relaxation?

I For a minimization integer program, the linear relaxation provides a
lower bound.

Proposition 1

Let z∗ and z′ be the objective values associated to the optimal
solutions of a minimization integer program and its linear relaxation,
respectively, then z′ ≤ z∗.

Proof. The linear relaxation has the same objective function as the
integer program does. However, its feasible region is at least weakly
larger than that of the integer program.

I For a maximization integer program, the linear relaxation provides
an upper bound.

Optimization, Fall 2013 – Integer Programming 20 / 57

Linear relaxation

Linear relaxation may be optimal

I If we are lucky, the optimal solution to the linear relaxation may be
feasible to the original integer program.

I When this happens, what does that imply?

Proposition 2

Let x′ be the optimal solutions to the linear relaxation of an integer
program. If x′ is feasible to the integer program, it is optimal to the
integer program.

Proof. Suppose x′ is not optimal to the IP, there must be another
feasible solution x′′ that is better. However, as x′′ is feasible to the IP,
it is also feasible to the linear relaxation, which implies that x′ cannot
be optimal to the linear relaxation.

Optimization, Fall 2013 – Integer Programming 21 / 57

Linear relaxation

Linear relaxation

I In general, for any given mathematical program:
I When we relax some constraints, a resulting optimal solution provides a

bound to the original program.
I If an optimal solution to the relaxed program is feasible to the original

program, it is optimal to the original program.

I Therefore, one attempt of solving an integer program is to first solve
its linear relaxation.
I If we are lucky and get a solution feasible to the integer program, we can

stop and report it!
I What if the solution is not feasible to the integer program?
I An optimal solution to the linear relaxation still provides some

suggestions to our decision making.
I If we really need an optimal solution to the integer program, how?

Optimization, Fall 2013 – Integer Programming 22 / 57

Linear relaxation

Rounding a fractional solution

I Suppose we solve a linear relaxation with an optimal solution x′.

I x′, however, has at least one variable violating the integer constraint in
the original integer program.

I As we cannot find the true optimal solution x∗ to the original integer
program, we may choose to round the variable.
I How do we know whether to round up or down?
I Is the resulting solution always feasible?
I Intuitively, the resulting solution should be close to x∗. Is it true?

Optimization, Fall 2013 – Integer Programming 23 / 57

Linear relaxation

Rounding a fractional solution

I Consider the following integer
program

(Q0)

max
s.t.

8x1 + 5x2

x1 + x2 ≤ 6
9x1 + 5x2 ≤ 45

xi ∈ Z+ ∀i = 1, 2.

I The optimal solution is x∗ = (5, 0).

I The optimal solution to the linear
relaxation is x1 = (15

4 , 9
4).

Optimization, Fall 2013 – Integer Programming 24 / 57

Linear relaxation

Rounding a fractional solution

I For x1 = (15
4 , 9

4):
I Rounding up any variable results

in infeasible solutions.
I None of the four grip points

around x′ is optimal.

I We need a way that guarantees to
find an optimal solution.

I The method we will introduce is
the branch-and-bound
algorithm.

Optimization, Fall 2013 – Integer Programming 25 / 57

Branch and bound

Road map

I Integer programming formulation.

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

Optimization, Fall 2013 – Integer Programming 26 / 57

Branch and bound

Rounding a fractional solution

I Recall that we obtain x1 = (15
4 , 9

4). as the result of solving the linear
relaxation.
I We hate fractional values!
I How may we remove fractional values?

I Consider x1, for example.
I Rounding up or down x1 (i.e., adding x1 = 4 or x1 = 3 into the program)

both fail to find the optimal solution.
I Because we eliminate too large a search space!
I Instead of adding equalities, we should add inequalities.

I What will happen if we add x1 ≥ 4 or x1 ≤ 3 into the program?

I We will branch this problem into two problems, one with an
additional constraint.

Optimization, Fall 2013 – Integer Programming 27 / 57

Branch and bound

Rounding a fractional solution

If we add x1 ≤ 3: If we add x1 ≥ 4:

I The optimal solution to the integer program must be contained in one
of the above two feasible regions. Why?

Optimization, Fall 2013 – Integer Programming 28 / 57

Branch and bound

Rounding a fractional solution

I So when we solve the linear relaxation and find any variable fractional,
we will branch this problem into two problems, one with an additional
constraint.

I Note that the two new programs are still linear programs.

I Once we solved them:
I If each of them results in a feasible solution to the original integer

program, simply compare these two and choose the better one.
I If any of them results in a variable violating the integer constraint,

branch again on that variable.
I Eventually compare all the feasible solutions we obtain.

Optimization, Fall 2013 – Integer Programming 29 / 57

Branch and bound

Example

I Let’s illustrate the
branch-and-bound algorithm with
the following example:

(P0)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11

xi ∈ Z+ ∀i = 1, 2.

Optimization, Fall 2013 – Integer Programming 30 / 57

Branch and bound

Subproblem 1

I First we solve the linear relaxation:

(P1)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11

xi ≥ 0 ∀i = 1, 2.

I The optimal solution is
x1 = (11

4 , 0).

I So we need to branch on x1.

Optimization, Fall 2013 – Integer Programming 31 / 57

Branch and bound

Branching tree

I The branch and bound algorithm produces a branching tree.
I Each node represents a subproblem.
I Each time we branch on a variable, we create two child nodes.

Optimization, Fall 2013 – Integer Programming 32 / 57

Branch and bound

Subproblem 2

I When we add x1 ≤ 2:

(P2)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

xi ≥ 0 ∀i = 1, 2.

I The optimal solution x2 = (2, 3
2),

so later we may need to branch on
x2.

I Before that, let’s solve subproblem
3.

Optimization, Fall 2013 – Integer Programming 33 / 57

Branch and bound

Subproblem 3

I When we add x1 ≥ 3:

(P3)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≥ 3

xi ≥ 0 ∀i = 1, 2.

I The problem is infeasible!

I This node is “dead” and does not
produce any candidate solution.

Optimization, Fall 2013 – Integer Programming 34 / 57

Branch and bound

Branching tree

I The current progress can be summarized in the branching tree.

I Note that z2 = 7.5 < 8.25 = z1.

I In general, when we branch to the next level, the objective value
associated with the optimal solution will always be weakly lower (for
a maximization problem).
I Why?

Optimization, Fall 2013 – Integer Programming 35 / 57

Branch and bound

Branching tree

I As x2 = 3
2 in x2, we will branch subproblem 2 on x2.

Optimization, Fall 2013 – Integer Programming 36 / 57

Branch and bound

Subproblem 4

I When we add x2 ≤ 1:

(P4)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≤ 1

xi ≥ 0 ∀i = 1, 2.

I Note that we add x2 ≤ 1 into
subproblem 2, so x1 ≤ 2 is still
there.

Optimization, Fall 2013 – Integer Programming 37 / 57

Branch and bound

Subproblem 5

I When we add x2 ≥ 2:

(P5)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≥ 2

xi ≥ 0 ∀i = 1, 2.

Optimization, Fall 2013 – Integer Programming 38 / 57

Branch and bound

Branching tree

I x4 satisfies all the integer constraints.

I It is a candidate solution to the original integer program.

I But branching subproblem 5 may result in a better solution.

Optimization, Fall 2013 – Integer Programming 39 / 57

Branch and bound

Branching tree

I Let’s branch subproblem 5 on x1.

Optimization, Fall 2013 – Integer Programming 40 / 57

Branch and bound

Subproblem 6

I When we add x1 ≤ 1:

(P6)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≥ 2
x1 ≤ 1

xi ≥ 0 ∀i = 1, 2.

I x6 = (1, 7
2

). We may need to branch on
x2 again. However, let’s solve subproblem
7 first.

Optimization, Fall 2013 – Integer Programming 41 / 57

Branch and bound

Subproblem 7

I When we add x1 ≥ 2:

(P7)

max
s.t.

3x1 + x2

4x1 + 2x2 ≤ 11
x1 ≤ 2

x2 ≥ 2
x1 ≥ 2

xi ≥ 0 ∀i = 1, 2.

I The problem is infeasible.

I The node is “dead”.

Optimization, Fall 2013 – Integer Programming 42 / 57

Branch and bound

Branching tree

I The only “alive”
node is subproblem
6, with x2

fractional.

I Before we branch
subproblem 6,
consider the
following:

Optimization, Fall 2013 – Integer Programming 43 / 57

Branch and bound

Bounding

I The current objective value of note 6 is z6 = 13
2 .

I If we branch subproblem 6, all the candidate solution generated under
it will have objective values weakly lower than 13

2 .

I However, 13
2 < 7 = z4, and x4 is already a candidate solution!

I So there is no need to branch subproblem 6. This is the “bounding”
situation in the branch-and-bound algorithm.
I This allows us to solve fewer subproblems.

Optimization, Fall 2013 – Integer Programming 44 / 57

Branch and bound

Summary

I In running the branch-and-bound algorithm, we maintain a branching
tree.

I If the solution of a subproblem is feasible to the original integer
program, set it to the candidate solution if it is currently the best
among all feasible solutions. Stop branching this node.

I If a subproblem is infeasible, stop branching this node.

I If the solution of a subproblem is not feasible to the original integer
program:
I If it is better than the current candidate solution, branch.
I Otherwise, stop branching.

Optimization, Fall 2013 – Integer Programming 45 / 57

Branch and bound

Another example

I Now let’s go back to our motivating example:

(Q0)

max
s.t.

8x1 + 5x2

x1 + x2 ≤ 6
9x1 + 5x2 ≤ 45

xi ∈ Z+ ∀i = 1, 2.

I Let’s solve it with the branch-and-bound algorithm.

Optimization, Fall 2013 – Integer Programming 46 / 57

Branch and bound

Subproblem 1

I x1 = (15
4
, 9
4

).

I We may branch on either variable. Let’s
branch on x1.

Optimization, Fall 2013 – Integer Programming 47 / 57

Branch and bound

Subproblems 2 and 3

I Subproblem 2 generates a candidate
solution.

I x3 = (4, 9
5

). As z3 = 41 > z2 = 39, we
should branch subproblem 3.

Optimization, Fall 2013 – Integer Programming 48 / 57

Branch and bound

Subproblems 4 and 5

I x4 = (40
9
, 1). As z4 = 40.25 > z2 = 39,

we should branch subproblem 4.

I Subproblem 5 is infeasible.

Optimization, Fall 2013 – Integer Programming 49 / 57

Branch and bound

Subproblems 6 and 7

I x6 = (4, 1) but z6 = 37 < 39 = z2.

I x7 = (5, 0) and z7 = 40 > 39 = z2. As it
is also the last node, x7 is an optimal
solution.

Optimization, Fall 2013 – Integer Programming 50 / 57

Branch and bound

Remarks

I To select a node to branch:
I Among all alive nodes, there are many different ways of selecting a node

to branch.
I One common approach is to branch the node with the highest objective

value (for a maximization problem). Why?
I Another popular approach is “once a node is branched, all its

descendants are branched before any nondescendant. Why?

I The branch-and-bound algorithm guarantees to find an optimal
solution, if one exists.

I However, it is an exponential-time algorithm.

Optimization, Fall 2013 – Integer Programming 51 / 57

Branch and bound for knapsack

Road map

I Integer programming formulation.

I Linear relaxation.

I Branch and bound.

I Branch and bound for knapsack.

Optimization, Fall 2013 – Integer Programming 52 / 57

Branch and bound for knapsack

Branch and bound for knapsack

I The branch-and-bound algorithm is particularly useful for solving the
knapsack problem.

I Because the linear relaxation of a knapsack problem can be solved very
easily.

I Consider the example

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6

xi ∈ {0, 1} ∀i = 1, ..., 4.

How to solve its linear relaxation?

Optimization, Fall 2013 – Integer Programming 53 / 57

Branch and bound for knapsack

Branch and bound for knapsack

I The linear relaxation

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6

xi ∈ [0, 1] ∀i = 1, ..., 4.

can be solved greedily by sorting the variables according to the
benefit-cost ratio.
I The four ratios are 5

3
≈ 1.67, 8

5
= 1.6, 3

2
= 1.5, and 7

4
= 1.75.

I x4 has the highest priority then x1, then x2, then x3.
I First set x4 = 1. Then set x1 = 2

3
(because setting x1 = 1 violates the

constraint). Then x2 = x3 = 0.

I Let’s now use the branch-and-bound algorithm to solve this knapsack
problem. For each node, we can use the above rule (instead of the
simplex method) to find an optimal solution.

Optimization, Fall 2013 – Integer Programming 54 / 57

Branch and bound for knapsack

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We branch subproblem 1 on x1:
I Note that x1 ≤ 0 is equivalent to x1 = 0 for this binary variable.

Optimization, Fall 2013 – Integer Programming 55 / 57

Branch and bound for knapsack

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We branch subproblem 3 first (why?)

Optimization, Fall 2013 – Integer Programming 56 / 57

Branch and bound for knapsack

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We branch subproblem 2 before we branch subproblem 4 (why?).

I Then, luckily, we will not need to branch subproblem 4.

Optimization, Fall 2013 – Integer Programming 57 / 57

Branch and bound for knapsack

Solving the knapsack problem

max 5x1 + 8x2 + 3x3 + 7x4

s.t. 3x1 + 5x2 + 2x3 + 4x4 ≤ 6, xi ∈ {0, 1} ∀i = 1, ..., 4.

I We do not need to branch subproblem 7.

I An optimal solution is found.

	IP formulation
	Linear relaxation
	Branch and bound
	Branch and bound for knapsack

