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Introduction

I So far we have focused on decision making problems with only one
decision maker.

I Game theory provides a rigorous framework for analyzing
multi-player decision making problems.

I As we will see, Linear Programming and Nonlinear Programming are
foundations for analyzing games.
I Dynamic Programming is a foundation for analyzing dynamic games.
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Road map

I Introduction.

I Nash equilibrium.

I Mixed strategies.

I Zero-sum games.

I Zero-sum games and duality.
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Introduction

Prisoners’ dilemma: story

I A and B broke into a grocery store and stole some money. Before
police officers caught them, they hided those money carefully without
leaving any evidence. However, a monitor got their images when they
broke the window.

I They were kept in two separated rooms. Each of them were offered two
choices: Denial or confession.
I If both of them deny the fact of stealing money, they will both get one

month in prison.
I If one of them confesses while the other one denies, the former will be set

free while the latter will get nine months in prison.
I If both confesses, they will both get six months in prison.

I They cannot communicate and they must make their choices
simultaneously.

I What will they do?
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Introduction

Prisoners’ dilemma: matrix representation

I We may use the following matrix to summarize this “game”:

Denial Confession

Denial −1,−1 −9, 0

Confession 0,−9 −6,−6

I There are two players, player 1 chooses actions in rows and player 2
chooses actions in columns.

I For each combination of actions, the two numbers are the payoffs of the
two players under their actions: the first for player 1 and the second for
player 2.

I E.g., if both prisoners deny, they will both get one month in prison,
which is represented by a payoff of −1.

I E.g., if prisoner 1 denies and prisoner 2 confesses, prisoner 1 will get 0
month in prison (and thus a payoff 0) and prisoner 2 will get 9 months in
prison (and thus a payoff −9).
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Introduction

Prisoners’ dilemma: solution

Denial Confession

Denial −1,−1 −9, 0

Confession 0,−9 −6,−6

I Prisoner 1 thinks:
I “If he denies, I should confess.”
I “If he confesses, I should still confess.”
I “I see! I should confess anyway!”

I For prisoner 2, the situation is the same and he will also confess.

I The solution of this game, i.e., the outcome, is that both prisoner
will confess.
I This is people’s prediction of this game.

I This outcome can be “improved” if they can cooperate.
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Introduction

Prisoners’ dilemma: discussions

I A game like the prisoners’ dilemma in which all players choose their
actions simultaneously is called a static game.

I This question (with a different story) was first formally raised by
Professor Tucker (one of the names in the KKT condition) in a
seminar.

I In this game, confession is said to be a dominant strategy.

I It illustrates that lack of coordination can result in a lose-lose
outcome.
I This situation is termed as socially inefficient.

I Interestingly, even if they promised each other to deny once they are
caught, this promise is non-credible. Both of them will still confess to
maximize their payoffs.
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Introduction

Prisoners’ dilemma: Advertising game

I Two companies are competing in a market.

I At this moment, they both earn four million dollars per year.

I Each of them may choose to advertise with a cost of three million per
year:
I If one advertises while the other does not, she earns nine millions and the

competitor earns one million.
I If both advertise, both will earn six millions.

Advertise Be silent

Advertise 3, 3 6, 1

Be silent 1, 6 4, 4

I What will they do?
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Introduction

Prisoners’ dilemma: Arms race

I Two countries are neighbors.

I Each of them may choose to develop a new weapon:
I If one does so while the other one keep the current status, the former’s

payoff is 20 and the latter’s payoff is −100.
I If both do this, however, their payoffs are both −10.

NW CS

NW −10,−10 20,−100

CS −100, 20 0, 0

I What will they do?
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Introduction

Predicting the outcome of other games

I How about games that are not the prisoners’ dilemma? Do we have a
systematic way to predict the outcome?

I What will be the outcome (a combination of actions chosen by the two
players) of the following game?

Left Middle Right

Up 1, 0 1, 2 0, 1

Down 0, 3 0, 1 2, 0
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Introduction

Eliminating strictly dominated options

I We may apply the same trick we used to solve the prisoners’ dilemma.

I For player 2, playing Middle dominates playing Right. So we may
eliminate the column of Right without eliminating any possible
outcome:

Left Middle Right

Up 1, 0 1, 2 0, 1

Down 0, 3 0, 1 2, 0

→
Left Middle

Up 1, 0 1, 2

Down 0, 3 0, 1
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Introduction

Eliminating strictly dominated options

I Now, player 1 knows that player 2 will never play Right.

I Facing the reduced game, player 1 finds that playing Down is
dominated by playing Up.

I The row of Down can thus be eliminated:

Left Middle

Up 1, 0 1, 2

Down 0, 3 0, 1

→ Left Middle

Up 1, 0 1, 2

I Knowing that player 1 will only choose Up, player 2 will simply choose
Middle.

I The outcome of this game will be that player 1 chooses Up and player
2 chooses Middle.
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Introduction

Eliminating strictly dominated options

I In game theory, options are typically called strategies.

I The above idea is called iterative elimination of strictly
dominated strategies.

I It solves some games. However, is also fails to solve some others.

I Consider the following game “Matching pennies”:

Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

I What may we do when no more strategies can be eliminated?

I In 1950, John Nash formalized the concept of equilibrium solutions,
which are called Nash equilibria nowadays.1

1He did that as a Ph.D. students, when he was 22 years old.
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Nash equilibrium

Road map

I Introduction.

I Nash equilibrium.

I Mixed strategies.

I Zero-sum games.

I Zero-sum games and duality.
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Nash equilibrium

Nash equilibrium: definition

I The most fundamental equilibrium concept, Nash equilibrium, is
defined as follows:

Definition 1

For an n-player game, let Si be player i’s action space and ui be
player i’s utility function, i = 1, ..., n. An action profile (s∗1, ..., s

∗
n),

s∗i ∈ Si, is a Nash equilibrium if

ui(s
∗
1, ..., s

∗
i−1, s

∗
i , s
∗
i+1, ..., s

∗
n)

≥ ui(s
∗
1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n)

for all si ∈ Si, i = 1, ..., n.

I In other words, s∗i solves

max
si∈Si

ui(s
∗
1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n).
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Nash equilibrium

Nash equilibrium: an example

I Consider the following game in which no strategy/action is strictly
dominated:

L C R

T 0, 4 4, 0 5, 3

M 4, 0 0, 4 5, 3

B 3, 5 3, 5 6, 6

I What is a Nash equilibrium?
I (T, L) is not: Player 1 will deviate to M or B.
I (T, C) is not: Player 2 will deviate to L or R.
I (B, R) is: No one will unilaterally deviate.
I Any other Nash equilibrium?
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Nash equilibrium

Nash equilibrium as a solution concept

L C R

T 0, 4 4, 0 5, 3

M 4, 0 0, 4 5, 3

B 3, 5 3, 5 6, 6

I In a static game, a Nash equilibrium is a reasonable outcome.
I Imagine that the players play this game repeatedly.
I If they happen to be in a Nash equilibrium, no one has the incentive to

unilaterally deviate, i.e., to change her action while all others keep
their actions.

I If they do not, at least one will deviate. This process will continue until a
Nash equilibrium is reached.

I For example, if they starts at (T, L), eventually they will stop at (B,
R), the unique Nash equilibrium of this game.
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Nash equilibrium

Nash equilibrium: More examples

I Is there any Nash equilibrium
of the prisoners’ dilemma?

I Is there any Nash equilibrium
of the game “BoS”?
I Battle of sexes.
I Bach or Stravinsky.

I Is there any Nash equilibrium
of the matching pennies game?

Denial Confession

Denial −1,−1 −9, 0

Confession 0,−9 −6,−6

Bach Stravinsky

Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1
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Nash equilibrium

Cournot Competition

I In 1838, Antoine Cournot introduced the following quantity
competition between two retailers.

I Let qi be the production quantity of firm i, i = 1, 2.

I Let P (Q) = a−Q be the market-clearing price for an aggregate
demand Q = q1 + q2.

I Unit production cost of both firms is c < a.

I Our questions are:
I In this environment, what will these two firms do?
I Is the outcome satisfactory?
I What is the difference between duopoly and monopoly (or equivalently,

decentralization or integration).
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Nash equilibrium

Cournot Competition

I Players: 1 and 2.

I Action spaces: Si = [0,∞) for i = 1, 2.

I Utility functions:

ui(q1, q2) = qi[a− (qi + q3−i)− c], i = 1, 2.

I As for an outcome, we look for a Nash equilibrium.

I If (q∗1 , q
∗
2) is a Nash equilibrium, it must satisfy

q∗1 = argmax
q1∈[0,∞)

u1(q1, q
∗
2) = argmax

q1∈[0,∞)

q1[a− (q1 + q∗2)− c] and

q∗2 = argmax
q2∈[0,∞)

u2(q∗1 , q2) = argmax
q2∈[0,∞)

q2[a− (q∗1 + q2)− c].
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Nash equilibrium

Solving the Cournot competition

I For firm 1’s problem, we first see that it is a convex program:
I u′1(q1, q

∗
2) = a− q1 − q∗2 − c− q1.

I u′′2 (q1, q
∗
2) = −2 < 0.

I The FOC condition suggests q∗1 = 1
2 (a− q∗2 − c). As long as q∗2 < a− c,

q∗1 is optimal for firm 1.

I Similarly, q∗2 = 1
2 (a− q∗1 − c) is firm 2’s optimal decision as long as

q∗1 < a− c.
I So if (q∗1 , q

∗
2) is a Nash equilibrium, it must satisfy

q∗1 =
1

2
(a− q∗2 − c) and q∗2 =

1

2
(a− q∗1 − c).

I The unique solution to this system is q∗1 = q∗2 = a−c
3 .

I Does this solution make sense?
I This is indeed the unique Nash equilibrium as a−c

3
< a− c.
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Nash equilibrium

Best responses

I Another way of solving this game
is to use the best response
functions.
I Given the other player’s any

decision, what is my optimal
decision?

I Firm 1’s best response to firm 2 is
R1(q2) = 1

2 (a− q2 − c).
I Similarly, firm 2’s best response is
R2(q1) = 1

2 (a− q1 − c).
I A Nash equilibrium always lies on

an intersection of the two best
response functions.
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Nash equilibrium

Distortion due to decentralization

I Suppose the two firms’ are integrated together to jointly choose the
aggregate production quantity.

I They together solve
max

Q∈[0,∞)
Q[a−Q− c],

whose optimal solution is Q∗ = a−c
2 .

I Note that Q∗ = a−c
2 < 2(a−c)

3 = q∗1 + q∗2 .

I Why does a firm intend to increase its production quantity under
decentralization?
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Nash equilibrium

Inefficiency due to decentralization

I May these firms improve their profitability with integration?

I Under decentralization, firm i earns

πD
i =

(a− c)
3

[
a− 2(a− c)

3
− c

]
=

(
a− c

3

)(
a− c

3

)
=

(a− c)2

9
.

I Under integration, the two firms earn

πC =
(a− c)

2

[
a− a− c

2
− c

]
=

(
a− c

2

)(
a− c

2

)
=

(a− c)2

4
.

I πC > πD
1 + πD

2 : The integrated system is more efficient.

I Through appropriate profit splitting, both firm earns more.
I Integration is a win-win solution!
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Nash equilibrium

Inefficiency due to decentralization

I How about consumers?

I Under decentralization, the aggregate quantity is 2(a−c)
3 and the

market-clearing price is a−c
3 .

I Under integration, the aggregate quantity is a−c
2 and the

market-clearing price is a−c
2 .

I Under decentralization, more consumers buy this product with a
lower price.

I Consumers benefits from competition.

I Integration benefits the firms but hurts consumers.
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Nash equilibrium

The two firms’ prisoners’ dilemma

I Now we know it is the two firms’ best interests to together produce
Q = a−c

2 .

I What if we suggest each of them to choose q′1 = q′2 = a−c
4 ?

I This results in Q = a−c
2 , which maximizes the total profit.

I However, this is not a Nash equilibrium:
I “If the other firm chooses q′ = a−c

4
, I will move to

q′′ = R(q′) =
1

2
(a− q′ − c) =

3(a− c)
8

.

I So both firms will have incentives to unilaterally deviate.

I These two firms are engaged in a prisoners’ dilemma!
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Nash equilibrium

Bertrand competition

I In 1883, Joseph Bertrand considered another format of retailer
competition: They choose prices instead of quantities.

I Firm i chooses price pi, i = 1, 2.

I Firm i’s demand quantity is

qi = a− pi + bp3−i, i = 1, 2.

I b ∈ [0, 1) measures the intensity of competition is: The larger b, the
more intense the competition.

I Why b < 1?

I Unit production cost c < a.
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Nash equilibrium

Solving the Bertrand competition

I Suppose (p∗1, p
∗
2) is a Nash equilibrium.

I For firm 1, p∗1 must be an optimal solution of

max
p1∈[0,∞)

π1

(
p1, p

∗
2

)
=
(
a− p1 + bp∗2

)
(p1 − c).

It can be verified that p∗1 = 1
2 (a+ bp∗2 + c).

I Similarly, p∗2 = 1
2 (a+ bp∗1 + c).

I The unique Nash equilibrium is p∗1 = p∗2 = a+c
2−b .

I Does this solution make sense?
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Nash equilibrium

Distortion due to decentralization

I Under integration, the two firms together choose a single price P to
solve

max
P∈[0,∞)

2(a− P + bP )(P − c),

whose optimal solution P ∗ satisfies the FOC

(−1 + b)(P ∗ − c) + a− P ∗ + bP ∗ = 0

⇔ (−1 + b)P ∗ + a+ c(1− b) = 0

⇔ P ∗ =
a+ c(1− b)

2(1− b)
.

I Is P ∗ > p∗1 = p∗2?

P ∗ > p∗1 ⇔
a+ c(1− b)

2(1− b)
>
a+ c

2− b
⇔ a > c(1− b).

Is a > c(1− b) always true?
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Mixed strategies

Road map

I Introduction.

I Nash equilibrium.

I Mixed strategies.

I Zero-sum games.

I Zero-sum games and duality.
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Mixed strategies

Mixed strategy

I Choosing a single action deterministically is said to implement a pure
strategy.

I A mixed strategy for player i is a probability distribution over
the strategy space Si.
I She randomizes her choice of actions with the distribution.
I E.g., in the matching penny game, player 1’s mixed strategy is a

probability distribution (q, 1− q), where Pr(Head) = q and
Pr(Tail) = 1− q.

I Formally, if all the strategy spaces are finite and of size Ki:

Definition 2

A mixed strategy for player i is a vector pi = (pi1, ..., piKi), where

0 ≤ pij ≤ 1 for all j = 1, ...,Ki and
∑Ki

j=1 pij = 1.
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Mixed strategies

Mixed-strategy Nash equilibrium

I A profile is a mixed-strategy Nash equilibrium if no player can
unilaterally deviate (modify her own mixed strategy) and obtain a
strictly higher expected utility.

I Let’s use the matching penny game as an example.

Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

I Let (q, 1− q) be player 1’s mixed strategy.
I Let (r, 1− r) be player 2’s mixed strategy.
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Mixed strategies

Mixed-strategy Nash equilibrium

I Under their strategies, player 1 will earn:
I u1(H,H) = 1 with probability qr.
I u1(H,T ) = −1 with probability q(1− r).
I u1(T,H) = −1 with probability (1− q)r.
I u1(T, T ) = 1 with probability (1− q)(1− r).

I Player 1’s expected utility is

v1(q, r) = E[u1(q, r)]

= qru1(H,H) + q(1− r)u1(H,T )

+ (1− q)ru1(T,H) + (1− q)(1− r)u1(T, T )

= qr + (1− q)(1− r)− q(1− r)− (1− q)r
= 4qr − 2q − 2r + 1 = 2q(2r − 1)− 2r + 1.

I Similarly, player 2’s expected utility is

v2(q, r) = −4qr + 2q + 2r − 1 = 2r(−2q + 1) + 2q − 1.
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Mixed strategies

Mixed-strategy Nash equilibrium
I For player 1, let q∗ = R1(r) be the best response that maximizes

v1(q, r) = 2q(2r − 1)− 2r + 1.

I If r < 1
2
, R1(r) = 0.

I If r > 1
2
, R1(r) = 1.

I If r = 1
2
, R1(r) = [0, 1] (q does not matter).
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Mixed strategies

Mixed-strategy Nash equilibrium

I For player 2, the best response that maximizes

v2(q, r) = −4qr + 2q + 2r − 1 = 2r(−2q + 1) + 2q − 1.

is r∗ = R2(q) = 1 if q < 1
2 , 0 if q > 1

2 , and [1, 0] if q = 1
2 .

I The unique mixed-strategy Nash equilibrium is (q∗, r∗) = (1
2 ,

1
2 ).
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Mixed strategies

BoS

I Consider the game BoS as another example.

Bach Stravinsky

Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

I There are two pure-strategy Nash equilibria. Which two?
I They are also mixed-strategy Nash equilibria.
I Is there other mixed-strategy Nash equilibrium?

I Mixed strategies:
I Let (q, 1− q) be player 1’s mixed strategy: Pr(B) = q = 1− Pr(S).
I Let (r, 1− r) be player 2’s mixed strategy: Pr(B) = r = 1− Pr(S).
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Mixed strategies

BoS

Bach Stravinsky

Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

I Player 1’s expected utility is q(3r − 1) + 1− r.
I Player 2’s expected utility is r(3q − 2) + 2(1− q).
I The best response functions are

R1(r) =


0 if r < 1

3

1 if r > 1
3

[1,0] if r = 1
3

and R2(q) =


0 if r < 2

3

1 if r > 2
3

[1,0] if r = 2
3

.
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Mixed strategies

BoS

I The two best response curves have three intersections!

I So there are three mixed-strategy Nash equilibria:
I (q∗, r∗) = (0, 0), ( 2

3
, 1
3
), and (1, 1).

I Two of them are pure-strategy Nash equilibria: (0, 0) means both
choosing S and (1, 1) means both choosing B.
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Mixed strategies

Mixed strategies over more actions

I Consider the game “Rock, paper, scissor”:

R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0

I When a player has three actions, a mixed strategy is described with
two variables.
I E.g., player 1’s mixed strategy is (q1, q2, 1− q1 − q2).

I When a player’s action space is infinite (e.g., those players in the
Cournot competition), a mixed strategy is a continuous probability
distribution.
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Mixed strategies

Existence of (mixed-strategy) Nash equilibrium

I In his work in 1950, John Nash proved the following theorem regarding
the existence of Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action
spaces are all finite, there exists at least one mixed-strategy Nash
equilibrium.

I This is a sufficient condition. Is it necessary?
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Zero-sum games

Road map
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I Zero-sum games and duality.
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Zero-sum games

Zero-sum games

I For some games, one’s success is the other one’s failure.
I When one earns $1, the other one loses $1.

I These games are called zero-sum games.
I The sum of all players’ payoffs are always zero under any action profile is

zero.

I What is the optimal strategy in a zero-sum game?
I One’s optimal strategy is to destroy the other one.
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Zero-sum games

Zero-sum games

I As an example, the following game is a zero-sum game:

L C R

T 4,−4 4,−4 10,−10

M 2,−2 3,−3 1,−1

B 6,−6 5,−5 7,−7

I For a zero-sum game, we typically remove player 2’s payoff:

L C R

T 4 4 10

M 2 3 1

B 6 5 7

I Player 1 wants to maximize her payoff.
I Player 2 wants to minimize player 1’s payoff.
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Zero-sum games

Player 1’s problem

I How to solve a zero-sum game?
I The idea of Nash equilibrium still applies. However, the unique structure

of zero-sum games allows us to solve them differently.

I Player 1 thinks:
I If I choose T, he will choose L or C. I get 4.
I If I choose M, he will choose R. I get 1.
I If I choose B, he will choose C. I get 5.

I For each of player 1’s actions, what he may get in equilibrium can only
be the row minimum.

L C R Row min

T 4 4 10 4

M 2 3 1 1

B 6 5 7 5
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Zero-sum games

Player 2’s problem

I Player 2 thinks:
I If I choose L, she will choose B. She get 6.
I If I choose C, she will choose B. She get 5.
I If I choose R, she will choose T. She get 10.

I For each of player 2’s actions, what player 1 may get in equilibrium
must be the column maximum.

L C R Row min

T 4 4 10 4

M 2 3 1 1

B 6 5 7 5

Column max 6 5 10

I In equilibrium, player 1 maximizes the row minimum and player 2
minimizes the column maximum.

I The unique Nash equilibrium is (B, C).



Optimization, Fall 2013 – Game Theory 46 / 57

Zero-sum games

Saddle points

I For a zero-sum game, a pure-strategy Nash equilibrium is called a
saddle point.

I While there may not exist a pure-strategy Nash equilibrium for a
general game, this also holds for a zero-sum game.
I Any example?

I Is there any condition for a pure-strategy Nash equilibrium to exist in
a zero-sum game?
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Zero-sum games

Existence of saddle points

L C R R. min

T 4 4 10 4

M 2 3 1 2

B 6 5 7 5

C. max 6 5 10

H T R. min

H 1 −1 −1

T −1 1 −1

C. max 1 1

I For the previous example with a pure-strategy Nash equilibrium,

max{row minima} = 5 = min{column maxima}.

I For the zero-sum game matching penny with no pure-strategy Nash
equilibrium,

max{row minima} = 1 6= −1 = min{column maxima}.
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Zero-sum games

Existence of saddle points

I Is there any relationship between the existence of saddle points and the
values of max{row minima} and min{column maxima}?

Proposition 2

For a two-player zero-sum game, if

max{row minima} = min{column maxima},

an intersection of a max{row minima} and a min{column maxima} is
a saddle point.

I To prove this, we rely on linear programming. In particular, we will
apply LP duality.
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Zero-sum games and duality

Road map

I Introduction.

I Nash equilibrium.
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I Zero-sum games.

I Zero-sum games and duality.
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Zero-sum games and duality

Mixed strategies for zero-sum games

I For a zero-sum game:
I A pure-strategy Nash equilibrium (i.e., saddle point) may not exist.
I A mixed-strategy Nash equilibrium must exist.

I How do players choose their mixed strategies?

I Recall that when a saddle point exists:
I Player 1 chooses a row to maximize row minimum.
I Player 2 chooses a column to minimize the column maximum.

I In general:
I Player 1 chooses a row to maximize the expectation of row payoffs

under player 2’s mixed strategy.
I Player 2 chooses a column to minimize the expectation of column payoffs

under player 1’s mixed strategy.
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Zero-sum games and duality

Mixed strategies for zero-sum games

I Suppose player 1’s mixed strategy is x = (x1, x2, x3):

L C R

T (with probability x1) 4 4 10

M (with probability x2) 2 3 1

B (with probability x3) 6 5 7

Expected column payoff 4x1 + 2x2 + 6x3 4x1 + 3x2 + 5x3 10x1 + x2 + 7x3

I Player 2 will find the smallest expected column maximum.

I Therefore, Player 1 should solve

max min{4x1 + 2x2 + 6x3, 4x1 + 3x2 + 5x3, 10x1 + x2 + 7x3}
s.t. x1 + x2 + x3 = 1

xi ≥ 0 ∀i = 1, ..., 3.



Optimization, Fall 2013 – Game Theory 52 / 57

Zero-sum games and duality

Linearization of player 1’s problem

max min{4x1 + 2x2 + 6x3, 4x1 + 3x2 + 5x3, 10x1 + x2 + 7x3}
s.t. x1 + x2 + x3 = 1

xi ≥ 0 ∀i = 1, ..., 3.

I Player 1’s problem is nonlinear.

I However, it is equivalent to the following linear program:

max v

s.t. v ≤ 4x1 + 2x2 + 6x3

v ≤ 4x1 + 3x2 + 5x3

v ≤ 10x1 + x2 + 7x3

x1 + x2 + x3 = 1

xi ≥ 0 ∀i = 1, ..., 3.



Optimization, Fall 2013 – Game Theory 53 / 57

Zero-sum games and duality

Player 2’s problem

I Suppose player 2’s mixed strategy is y = (y1, y2, y3).

I Following the same logic, player 2 solves the linear program

min u

s.t. u ≥ 4y1 + 4y2 + 10y3

u ≥ 2y1 + 3y2 + y3

u ≥ 6y1 + 5y2 + 7y3

y1 + y2 + y3 = 1

yi ≥ 0 ∀i = 1, ..., 3.
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Zero-sum games and duality

Duality between the two players

I The two players’ problems can be rewritten to

z∗ = max
s.t.

v
−4x1 − 2x2 − 6x3 + v ≤ 0
−4x1 − 3x2 − 5x3 + v ≤ 0
−10x1 − x2 − 7x3 + v ≤ 0

x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, v urs.

w∗ = min
s.t.

u
−4y1 − 4y2 − 10y3 + u ≥ 0
−2y1 − 3y2 − y3 + u ≥ 0
−6y1 − 5y2 − 7y3 + u ≥ 0
y1 + y2 + y3 = 1

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, u urs.

I This is a primal-dual pair!
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Duality between the two players

I For a two-player zero-sum game, if an LP finds player 1’s optimal
strategy, its dual finds player 2’s optimal strategy.
I A pair of primal and dual optimal solutions x∗ and y∗ form a

mixed-strategy Nash equilibrium.

I Some examples in business:
I Two competing retailers sharing a fixed amount of consumers.
I A retailer and a manufacturer negotiating the price of a product.

I Can any of these two LPs be infeasible or unbounded?
I No! Because a mixed-strategy Nash equilibrium always exists.
I So these two LPs must both have optimal solutions.
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Zero-sum games and duality

Existence of saddle points

I Now we are ready to prove the theorem regarding the existence of
saddle points:

For a two-player zero-sum game, if

max{row minima} = min{column maxima},

an intersection of a max{row minima} and a
min{column maxima} is a saddle point.
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Zero-sum games and duality

Existence of saddle points

I First of all, note that choosing a single row or column corresponds to a
feasible primal or dual solution:
I Choosing a single row is for player 1 to implement a pure strategy (by

setting the corresponding xi = 1 and xk = 0 for all k 6= i).
I This is a feasible solution to the primal LP.
I Similarly, choosing a single column corresponds to a feasible solution to

the dual LP with yj = 1 and yk = 0 for all k 6= j.

I Suppose max{row minima} = min{column maxima} is satisfied:
I Suppose this occurs at row i and column j.
I Let x∗ be the primal solution with x∗i = 1 and x∗k = 0 for all k 6= i.
I Let y∗ be the dual solution with y∗j = 1 and y∗k = 0 for all k 6= j.
I As the condition is satisfied, z∗ = w∗ for two feasible solutions. By

strong duality, these two feasible solutions are both optimal.

I A pair of primal-dual optimal solutions form a mixed-strategy Nash
equilibrium. As x∗i = y∗j = 1, x∗ and y∗ form a saddle point.
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