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Introduction

» So far we have focused on decision making problems with only one
decision maker.

» Game theory provides a rigorous framework for analyzing
multi-player decision making problems.

» As we will see, Linear Programming and Nonlinear Programming are
foundations for analyzing games.

» Dynamic Programming is a foundation for analyzing dynamic games.
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Prisoners’ dilemma: story

v

A and B broke into a grocery store and stole some money. Before
police officers caught them, they hided those money carefully without
leaving any evidence. However, a monitor got their images when they
broke the window.
They were kept in two separated rooms. Each of them were offered two
choices: Denial or confession.
» If both of them deny the fact of stealing money, they will both get one
month in prison.
> If one of them confesses while the other one denies, the former will be set
free while the latter will get nine months in prison.
» If both confesses, they will both get six months in prison.

They cannot communicate and they must make their choices
simultaneously.

What will they do?
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Prisoners’ dilemma: matrix representation

» We may use the following matrix to summarize this “game”:
‘ Denial ‘ Confession
Denial | —=1,—-1| —=9,0
Confession ‘ 0,-9 ‘ —6,—6

» There are two players, player 1 chooses actions in rows and player 2
chooses actions in columns.

» For each combination of actions, the two numbers are the payoffs of the
two players under their actions: the first for player 1 and the second for
player 2.

» E.g., if both prisoners deny, they will both get one month in prison,
which is represented by a payoff of —1.

» E.g., if prisoner 1 denies and prisoner 2 confesses, prisoner 1 will get 0
month in prison (and thus a payoff 0) and prisoner 2 will get 9 months in
prison (and thus a payoff —9).
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Prisoners’ dilemma: solution

‘ Denial ‘ Confession

Denial | —1,—1 | -9,0
Confession‘ 0,—9 ‘ —6,—6

» Prisoner 1 thinks:
» “If he denies, I should confess.”
» “If he confesses, I should still confess.”
» “I see! I should confess anyway!”

v

For prisoner 2, the situation is the same and he will also confess.

v

The solution of this game, i.e., the outcome, is that both prisoner
will confess.

» This is people’s prediction of this game.

v

This outcome can be “improved” if they can cooperate.
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Prisoners’ dilemma: discussions

v

A game like the prisoners’ dilemma in which all players choose their
actions simultaneously is called a static game.

This question (with a different story) was first formally raised by
Professor Tucker (one of the names in the KKT condition) in a
seminar.

» In this game, confession is said to be a dominant strategy.

» It illustrates that lack of coordination can result in a lose-lose

outcome.

» This situation is termed as socially inefficient.
Interestingly, even if they promised each other to deny once they are
caught, this promise is non-credible. Both of them will still confess to
maximize their payoffs.
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Prisoners’ dilemma: Advertising game

» Two companies are competing in a market.
» At this moment, they both earn four million dollars per year.

» Each of them may choose to advertise with a cost of three million per
year:

» If one advertises while the other does not, she earns nine millions and the
competitor earns one million.
» If both advertise, both will earn six millions.

‘ Advertise ‘ Be silent
Advertise ‘ 3,3 ‘ 6,1
Be silent ‘ 1,6 ‘ 4,4
» What will they do?
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Prisoners’ dilemma: Arms race

» Two countries are neighbors.
» Each of them may choose to develop a new weapon:

» If one does so while the other one keep the current status, the former’s
payoff is 20 and the latter’s payoff is —100.
» If both do this, however, their payoffs are both —10.

| NW | Cs
NW | —10,-10 | 20,—-100
CS | —100,20 | 0,0

» What will they do?



Optimization, Fall 2013 — Game Theory 10 /57
L Introduction

Predicting the outcome of other games

» How about games that are not the prisoners’ dilemma? Do we have a
systematic way to predict the outcome?

» What will be the outcome (a combination of actions chosen by the two
players) of the following game?

| Left | Middle | Right
Up | L0 1,2 | 01
Down | 0,3 | 0,1 | 20
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Eliminating strictly dominated options

» We may apply the same trick we used to solve the prisoners’ dilemma.

» For player 2, playing Middle dominates playing Right. So we may
eliminate the column of Right without eliminating any possible
outcome:

‘ Left ‘ Middle ‘ Right
Up | L,o| 1,2 | 0,1
Down | 0,3 | 0,1 | 20

‘ Left ‘ Middle
Up | 1,0 | 1,2
Down ‘ 0,3 ‘ 0,1




Optimization, Fall 2013 — Game Theory 12 /57
L Introduction

Eliminating strictly dominated options

» Now, player 1 knows that player 2 will never play Right.

» Facing the reduced game, player 1 finds that playing Down is
dominated by playing Up.

» The row of Down can thus be eliminated:

‘ Left ‘ Middle
Up | L,0]| 1,2 —
Down | 0,3 | 0,1

‘ Left ‘ Middle
Up | 1,0 | 1,2

» Knowing that player 1 will only choose Up, player 2 will simply choose
Middle.

» The outcome of this game will be that player 1 chooses Up and player
2 chooses Middle.
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Eliminating strictly dominated options

» In game theory, options are typically called strategies.

» The above idea is called iterative elimination of strictly
dominated strategies.

> It solves some games. However, is also fails to solve some others.

» Consider the following game “Matching pennies”:
‘ Head ‘ Tail
Head ‘ 1,-1 ‘ -1,1
Tail | —1,1]1,-1

» What may we do when no more strategies can be eliminated?

» In 1950, John Nash formalized the concept of equilibrium solutions,
which are called Nash equilibria nowadays.!

IHe did that as a Ph.D. students, when he was 22 years old.
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Nash equilibrium: definition

» The most fundamental equilibrium concept, Nash equilibrium, is
defined as follows:

Definition 1

For an n-player game, let S; be player i’s action space and u; be
player i’s utility function, i =1,...,n. An action profile (s3,...,s}),
sy € 8, 15 a Nash equilibrium if

* * * % *
Wi(8], -y 8715555 Sip 151 50)

* * * *
> Ui(ST, s S;_ 155> Siq1s -1 50)
foralls; € S;,i=1,...,n.
» In other words, s; solves

* * * *
max ui(slv"'751'71781',51'«&»17"~7Sn)'
s;E€S;
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L-Nash equilibrium

Nash equilibrium: an example

» Counsider the following game in which no strategy/action is strictly
dominated:
| L]C|R

T |0,4]4,0]5,3

M |4,0]04]|53

B ‘3,5 ‘ 3,5 ‘ 6,6
» What is a Nash equilibrium?
(T, L) is not: Player 1 will deviate to M or B.
(T, C) is not: Player 2 will deviate to L or R.

(B, R) is: No one will unilaterally deviate.
Any other Nash equilibrium?

Yy vy VY
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Nash equilibrium as a solution concept

[ L]C|R
T |0,4]4,0]5,3
M |4,0]04]5,3
B |3,5]3,5]6,6

» In a static game, a Nash equilibrium is a reasonable outcome.

» Imagine that the players play this game repeatedly.

» If they happen to be in a Nash equilibrium, no one has the incentive to
unilaterally deviate, i.e., to change her action while all others keep
their actions.

» If they do not, at least one will deviate. This process will continue until a
Nash equilibrium is reached.

» For example, if they starts at (T, L), eventually they will stop at (B,
R), the unique Nash equilibrium of this game.
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Nash equilibrium: More examples

‘ Denial ‘ Confession

> Is there any Nash equilibrium Denial | —1,-1] —9,0

of the prisoners’ dilemma? Confession | 0,-9 | —6,—6

| Bach | Stravinsky
» Is there any Nash equilibrium

of the game “BoS”? Bach ‘ 2,1 ‘ 0,0
» Battle of sexes. Stravinsky ‘ 0,0 ‘ 1,2
» Bach or Stravinsky.
| Head | Tail
» Is there any Nash equilibrium Head ‘ 1,-1 ‘ -1,1

of the matching pennies game? Tail ‘ ~1,1 ‘ 1,-1
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Cournot Competition

» In 1838, Antoine Cournot introduced the following quantity
competition between two retailers.

» Let ¢; be the production quantity of firm 4, i = 1, 2.

> Let P(Q) = a — @ be the market-clearing price for an aggregate
demand Q) = q1 + g2.

» Unit production cost of both firms is ¢ < a.

» Our questions are:

> In this environment, what will these two firms do?

> Is the outcome satisfactory?

» What is the difference between duopoly and monopoly (or equivalently,
decentralization or integration).
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Cournot Competition

v

Players: 1 and 2.

v

Action spaces: S; = [0,00) for i =1, 2.

v

Utility functions:

ui(qr,q2) = gila — (¢; + q3—i) — ¢],i =1,2.

v

As for an outcome, we look for a Nash equilibrium.

v

If (¢, q3) is a Nash equilibrium, it must satisfy
q; = argmax u1(q1,q5) = argmax q1[a — (q1 + ¢5) — ¢] and
q1€[0,00) q1€[0,00)

g5 = argmax us(qj,qe) = argmax gola — (¢f + q2) — ¢J.
g2€[0,00) g2€[0,00)
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Solving the Cournot competition

» For firm 1’s problem, we first see that it is a convex program:

> Ull(quqg) =a—q _q; —C—{(q1.
> uz(q1,q3) = =2 <0.

» The FOC condition suggests ¢f = (a — g5 —¢). Aslong as ¢5 <a—c,

g7 is optimal for firm 1.
» Similarly, ¢5 = 3(a — ¢f — ¢) is firm 2’s optimal decision as long as

qgi <a-—c.
» So if (¢7, ¢3) is a Nash equilibrium, it must satisfy

Q1—2(a ¢z —c) an ‘J2—2(a q —c).
» The unique solution to this system is ¢ = ¢5 = “3=.
» Does this solution make sense?

> This is indeed the unique Nash equilibrium as *7¢ < a —c.
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Best responses

» Another way of solving this game
is to use the best response A
functions.

> Given the other player’s any
decision, what is my optimal
decision?

» Firm 1’s best response to firm 2 is
Ri(q2) = 3(a— g2 —¢).

» Similarly, firm 2’s best response is
Ry(q1) = 5(a—q1 —c).

» A Nash equilibrium always lies on
an intersection of the two best
response functions.
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Distortion due to decentralization

» Suppose the two firms’ are integrated together to jointly choose the
aggregate production quantity.

» They together solve

max Qa—Q — ],
Q€[0,00)
whose optimal solution is @* = *Z=.

> Note that Q* = 93¢ < 2(e2e) — gx 4 gx.

» Why does a firm intend to increase its production quantity under
decentralization?
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Inefficiency due to decentralization

» May these firms improve their profitability with integration?
» Under decentralization, firm i earns
p_(a—c)| 2a—-c | _ fa—-c)\fa—c _(a—c)?
=g [a 3 ‘713 3 |7 9 =
» Under integration, the two firms earn

2O _ (a—c¢) |:aa—cc:| _ (a—c) <a—c> _ (a—c)2.
2 2 2 2 4

7¢ > 7P + 7P The integrated system is more efficient.

v

v

Through appropriate profit splitting, both firm earns more.
» Integration is a win-win solution!
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Inefficiency due to decentralization

» How about consumers?

» Under decentralization, the aggregate quantity is @ and the
market-clearing price is “3<.
» Under integration, the aggregate quantity is 25 and the

2
. L e,
market-clearing price is 4.

» Under decentralization, more consumers buy this product with a
lower price.

» Consumers benefits from competition.

» Integration benefits the firms but hurts consumers.



Optimization, Fall 2013 — Game Theory 26 /57
L-Nash equilibrium

The two firms’ prisoners’ dilemma

v

Now we know it is the two firms’ best interests to together produce
Q — II;C.

What if we suggest each of them to choose ¢} = ¢} =

(l*C?

=1
This results in @ = “5¢, which maximizes the total profit.
» However, this is not a Nash equilibrium:

v

v

a—c

4

7 ’ 1 ’
q :R(q)zi(a—q —c)=

» “If the other firm chooses ¢’ = , I will move to

3(a —c)
—

> So both firms will have incentives to unilaterally deviate.

v

These two firms are engaged in a prisoners’ dilemma!
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Bertrand competition

» In 1883, Joseph Bertrand considered another format of retailer
competition: They choose prices instead of quantities.
» Firm ¢ chooses price p;, i = 1, 2.
» Firm i’'s demand quantity is
¢ =a—p; +bpz_i,i=12.
» b€ [0,1) measures the intensity of competition is: The larger b, the
more intense the competition.

» Why b < 17

» Unit production cost ¢ < a.
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Solving the Bertrand competition

v

Suppose (p7,p3) is a Nash equilibrium.

v

For firm 1, p} must be an optimal solution of

max 71 (p1,p5) = (a — p1 + bp}) (p1 — ¢).
p1€[0,00)

It can be verified that p} = $(a + bp} + c).
Similarly, p3 = 1 (a + bp; + ¢).

v

The unique Nash equilibrium is pj = p5 = gfg

v

» Does this solution make sense?



Optimization, Fall 2013 — Game Theory 29 /57

L-Nash equilibrium

Distortion due to decentralization

» Under integration, the two firms together choose a single price P to

solve

max 2(a— P+ bP)(P —¢),
Pe0,00)

whose optimal solution P* satisfies the FOC

(=1+b)(P"—¢c)+a—P"+bP"=0
S (-1+b)P +a+c(l—-0b)=0
a+c(l1-0)

P —
< 21— b)

> Is P* > p} =ps?

a+ce(l=0b) a+c

20 =) >2_b<ﬁ>a>c(1fb).

P*>pl &

Is a > ¢(1 — b) always true?
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Mixed strategy

» Choosing a single action deterministically is said to implement a pure
strategy.
» A mixed strategy for player i is a probability distribution over
the strategy space .S;.
» She randomizes her choice of actions with the distribution.
» E.g., in the matching penny game, player 1’s mixed strategy is a
probability distribution (g, 1 — ¢), where Pr(Head) = ¢ and
Pr(Tail) =1 —gq.

» Formally, if all the strategy spaces are finite and of size Kj:

Definition 2

A mized strategy for player i is a vector p; = (pi1, ..., Pik, ), Where
0<pij <1foralj=1,.. K, and Z]K:ilpij =1.
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Mixed-strategy Nash equilibrium

» A profile is a mixed-strategy Nash equilibrium if no player can
unilaterally deviate (modify her own mixed strategy) and obtain a
strictly higher expected utility.

» Let’s use the matching penny game as an example.
‘ Head ‘ Tail
Head ‘ 1,-1 ‘ -1,1
Tail | —1,1]1,-1

» Let (¢,1 — q) be player 1’s mixed strategy.
» Let (r,1 —r) be player 2’s mixed strategy.
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Mixed-strategy Nash equilibrium

» Under their strategies, player 1 will earn:
> ui(H, H) = 1 with probability gr.
» ui(H,T) = —1 with probability ¢(1 —r).
» w1 (T, H) = —1 with probability (1 — ¢)r.
> u1(T,T) =1 with probability (1 —q)(1 — r).

» Player 1’s expected utility is

U1 (Qa T) = E[“l(‘]a T‘)]
= qrul(Ha H) + Q(l - ’r)ul(HaT)

+ (1 —q)rui(T,H)+ (1 —¢)(1 — r)us (T, T)
=qr+(1-q(-r)—ql-r)= (=g
=d4qr—2¢—2r+1=2q(2r — 1) —2r + 1.

» Similarly, player 2’s expected utility is

va(q,m) = —4qr+2¢+2r —1=2r(-2¢+1)+2¢ — 1.
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Mixed-strategy Nash equilibrium

» For player 1, let ¢* = Ry(r) be the best response that maximizes
v1(q,m) =2q(2r — 1) — 2r + 1.

» Ifr<i Ri(r)=0.
» Ifr> 1, Ri(r)=1.
> Ifr = %, Ri(r) = [0,1] (q does not matter).

A

(Head) "
i Ri(r)
1
2
(Tail) 9
1
Tail) (Head)




Optimization, Fall 2013 — Game Theory 35/57
LI\/Iixed strategies

Mixed-strategy Nash equilibrium

» For player 2, the best response that maximizes

va(q,7) = —4gr +2¢+2r =1 =2r(-2¢+1) +2¢ - L

isr*=Ry(q)=1ifg< %, 0if¢g>1, and [1,0] if ¢ = 1.

A
(Head)| "
1 Ry(r)
1
2
(Tail) q>

N

Tail) 2 (Head)

» The unique mixed-strategy Nash equilibrium is (¢*,r*) = (%, %)



Optimization, Fall 2013 — Game Theory 36 /57
LI\Iixed strategies

BoS

» Consider the game BoS as another example.
‘ Bach ‘ Stravinsky
Bach 2,1 | 0,0
Stravinsky | 0,0 | 1,2
» There are two pure-strategy Nash equilibria. Which two?

» They are also mixed-strategy Nash equilibria.
> Is there other mixed-strategy Nash equilibrium?
» Mixed strategies:
» Let (¢,1 — q) be player 1’s mixed strategy: Pr(B) = ¢ =1— Pr(S).
» Let (r,1 —r) be player 2’s mixed strategy: Pr(B) =r =1 — Pr(S).
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BoS

| Bach | Stravinsky
Bach 2,1 | 0,0
Stravinsky | 0,0 | 1,2

» Player 1’s expected utility is ¢(3r — 1) +1 — .
> Player 2’s expected utility is r(3¢ — 2) + 2(1 — ¢).

» The best response functions are

0 ifr < % 0 ifr < %
Ri(r)=¢ 1 if r>1 and Ry(q) =< 1 ifr>2
[1,0] ifr=3 [1,0] ifr=2
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BoS

» The two best response curves have three intersections!

A r
(B) 11
24 Rq(r)
(S) 3 1 t q>
(5) P (B)

> So there are three mixed-strategy Nash equilibria:
> (¢",77) =(0,0), (3, 5), and (1,1).
» Two of them are pure-strategy Nash equilibria: (0,0) means both
choosing S and (1, 1) means both choosing B.



Optimization, Fall 2013 — Game Theory 39 /57

LI\inxed strategies

Mixed strategies over more actions

» Consider the game “Rock, paper, scissor”:
‘ R P S
R| 0,0 | -1,1]1,-1
P|1,-1] 0,0 |-1,1
S| -1,1]1,-1] 0,0
» When a player has three actions, a mixed strategy is described with

two variables.
» E.g., player 1’s mixed strategy is (q1,q2,1 — ¢1 — q2).
» When a player’s action space is infinite (e.g., those players in the
Cournot competition), a mixed strategy is a continuous probability
distribution.
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Existence of (mixed-strategy) Nash equilibrium

» In his work in 1950, John Nash proved the following theorem regarding
the existence of Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action
spaces are all finite, there exists at least one mized-strateqy Nash
equilibrium.

» This is a sufficient condition. Is it necessary?
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= Zero-sum games

Zero-sum games

» For some games, one’s success is the other one’s failure.
» When one earns $1, the other one loses $1.
» These games are called zero-sum games.

» The sum of all players’ payoffs are always zero under any action profile is
Zero.

» What is the optimal strategy in a zero-sum game?

» One’s optimal strategy is to destroy the other one.
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Zero-sum games

» As an example, the following game is a zero-sum game:
| L C R
T |4,-4]4,—-4]10,-10
M|2-2|3-3] 1,-1
B|6,-6|5-5]| 7,-7

» For a zero-sum game, we typically remove player 2’s payoff:

[LICIR
T|4]4]10
M|2|3]1
B|6]|5]7

» Player 1 wants to maximize her payoff.
» Player 2 wants to minimize player 1’s payoff.

43 /57
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= Zero-sum games

Player 1’s problem

» How to solve a zero-sum game?

» The idea of Nash equilibrium still applies. However, the unique structure
of zero-sum games allows us to solve them differently.

» Player 1 thinks:

» If I choose T, he will choose L or C. I get 4.
» If I choose M, he will choose R. I get 1.
» If I choose B, he will choose C. I get 5.

» For each of player 1’s actions, what he may get in equilibrium can only
be the row minimum.

‘L‘C‘R‘Rowmin
T|4|4]|10] 4
M|2[3]1] 1
B|l6|5]7] 5
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= Zero-sum games

Player 2’s problem

» Player 2 thinks:

» If I choose L, she will choose B. She get 6.
> If I choose C, she will choose B. She get 5.
» If I choose R, she will choose T. She get 10.

» For each of player 2’s actions, what player 1 may get in equilibrium
must be the column maximum.

| L | C| R | Row min

T |44 ]10] 4
M 23] 1| 1
B 6|5 7| 5

Column max ‘ 6 ‘ 5 ‘ 10 ‘

» In equilibrium, player 1 maximizes the row minimum and player 2
minimizes the column maximum.

» The unique Nash equilibrium is (B, C).
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= Zero-sum games

Saddle points

» For a zero-sum game, a pure-strategy Nash equilibrium is called a
saddle point.

» While there may not exist a pure-strategy Nash equilibrium for a
general game, this also holds for a zero-sum game.

» Any example?
> Is there any condition for a pure-strategy Nash equilibrium to exist in
a zero-sum game?
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Existence of saddle points

‘L‘C‘R‘R.min

| H | T | R. min
T |4]4|10] 4
H |1 |-1] -1
M [2]3]1] 2
T |-1]1] -1
B |6]5|7] 5
C.max‘l‘l‘

C.max | 6 | 5 | 10 |

» For the previous example with a pure-strategy Nash equilibrium,
max{row minima} = 5 = min{column maxima}.

» For the zero-sum game matching penny with no pure-strategy Nash
equilibrium,

max{row minima} = 1 # —1 = min{column maxima}.

47 /57
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= Zero-sum games

Existence of saddle points

» Is there any relationship between the existence of saddle points and the
values of max{row minima} and min{column maxima}?

Proposition 2

For a two-player zero-sum game, if
max{row minima} = min{ column maxima},

an intersection of a max{row minima} and a min{column mazima} is
a saddle point.

» To prove this, we rely on linear programming. In particular, we will
apply LP duality.
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Mixed strategies for zero-sum games

» For a zero-sum game:

> A pure-strategy Nash equilibrium (i.e., saddle point) may not exist.
» A mixed-strategy Nash equilibrium must exist.

v

How do players choose their mixed strategies?

v

Recall that when a saddle point exists:

» Player 1 chooses a row to maximize row minimum.
» Player 2 chooses a column to minimize the column maximum.

v

In general:
» Player 1 chooses a row to maximize the expectation of row payoffs
under player 2’s mixed strategy.
» Player 2 chooses a column to minimize the expectation of column payoffs
under player 1’s mixed strategy.
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Mixed strategies for zero-sum games

» Suppose player 1’s mixed strategy is = (1, T2, x3):

\ L \ ¢ \ R
T (with probability z1) | 4 | 4 | 10
M (with probability z2) | 2 | 3 | 1
B (with probability x3) | 6 | 5 | 7

Expected column payoff ‘ 4xq1 + 2x2 + 623 ‘ 4xq + 3z + dxs ‘ 10z1 + 22 + 7x3

» Player 2 will find the smallest expected column maximum.

» Therefore, Player 1 should solve

max min{4xz, + 229 + 623,421 + 322 + bxs, 1021 + 29 + Txs}

st. z14+z24+23=1
r; >0 Vi=1,..,3.
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Linearization of player 1’s problem

max min{4zq + 2z2 + 6x3,4x1 + 3x2 + Sx3, 1021 + x2 + T3}
st. x14+ax2t+a3=1
x; >0 Vi=1,..,3.

» Player 1’s problem is nonlinear.

» However, it is equivalent to the following linear program:

max v

s.t. v <4z + 2z + 623
v < 4x1 4+ 3x9 + dxg
v <10z + x2 + Tx3
T+ T+ 23=1
;>0 Vi=1,..3.
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Player 2’s problem

» Suppose player 2’s mixed strategy is y = (y1,y2,y3)-

» Following the same logic, player 2 solves the linear program

min v

st u >4y, +4y2 + 10ys3
u > 2y +3y2 + ys
u > 6y1 + 5y + Tys3
y1+y2+ys=1
y; >0 Vi=1,..,3.
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Duality between the two players

» The two players’ problems can be rewritten to

®

331207 $2203 m3207

z" = max
s.t. —4xq

—4$1
—10I1
1

w* = min

s.t.  —4dy;

—2u

—6y1

Y1

Jr

+

2$2

sz
T2
X2

4y2
3y2
5y2

Y2

Jr

+

6%3

5$3
7$3
x3

10y3
Y3
7y3
Y3

v
+ v
+ v
+ v

U urs.

[

+ wu
+ wu
+ wu

y1 >0, y2 >0, y3 >0, u urs.

» This is a primal-dual pair!
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Duality between the two players

» For a two-player zero-sum game, if an LP finds player 1’s optimal
strategy, its dual finds player 2’s optimal strategy.

» A pair of primal and dual optimal solutions z* and y* form a
mixed-strategy Nash equilibrium.

» Some examples in business:

» Two competing retailers sharing a fixed amount of consumers.

> A retailer and a manufacturer negotiating the price of a product.
» Can any of these two LPs be infeasible or unbounded?

» No! Because a mixed-strategy Nash equilibrium always exists.
> So these two LPs must both have optimal solutions.
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Existence of saddle points

» Now we are ready to prove the theorem regarding the existence of
saddle points:

For a two-player zero-sum game, if
max{row minima} = min{ column mazima},

an intersection of a max{row minima} and a
min{ column mazima} is a saddle point.
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Existence of saddle points

» First of all, note that choosing a single row or column corresponds to a
feasible primal or dual solution:
» Choosing a single row is for player 1 to implement a pure strategy (by
setting the corresponding z; = 1 and z, = 0 for all k # 7).
» This is a feasible solution to the primal LP.
» Similarly, choosing a single column corresponds to a feasible solution to
the dual LP with y; = 1 and yx = 0 for all k£ # j.

» Suppose max{row minima} = min{column maxima} is satisfied:

v

Suppose this occurs at row i and column j.

Let z* be the primal solution with zj = 1 and zj = 0 for all k # 3.
Let y™ be the dual solution with y; = 1 and y; = 0 for all k # j.
As the condition is satisfied, z* = w* for two feasible solutions. By
strong duality, these two feasible solutions are both optimal.

vYyy

» A pair of primal-dual optimal solutions form a mixed-strategy Nash
equilibrium. As z} = y; =1, 2" and y* form a saddle point.
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