MBA 8023: Optimization Game Theory

Ling-Chieh Kung

Department of Information Management
National Taiwan University

January 8, 2013

Introduction

- So far we have focused on decision making problems with only one decision maker.
- Game theory provides a rigorous framework for analyzing multi-player decision making problems.
- As we will see, Linear Programming and Nonlinear Programming are foundations for analyzing games.
- Dynamic Programming is a foundation for analyzing dynamic games.

Road map

- Introduction.
- Nash equilibrium.
- Mixed strategies.
- Zero-sum games.
- Zero-sum games and duality.

Prisoners' dilemma: story

- A and B broke into a grocery store and stole some money. Before police officers caught them, they hided those money carefully without leaving any evidence. However, a monitor got their images when they broke the window.
- They were kept in two separated rooms. Each of them were offered two choices: Denial or confession.
- If both of them deny the fact of stealing money, they will both get one month in prison.
- If one of them confesses while the other one denies, the former will be set free while the latter will get nine months in prison.
- If both confesses, they will both get six months in prison.
- They cannot communicate and they must make their choices simultaneously.
- What will they do?

Prisoners' dilemma: matrix representation

- We may use the following matrix to summarize this "game":

	Denial	Confession
Denial	$-1,-1$	$-9,0$
Confession	$0,-9$	$-6,-6$

- There are two players, player 1 chooses actions in rows and player 2 chooses actions in columns.
- For each combination of actions, the two numbers are the payoffs of the two players under their actions: the first for player 1 and the second for player 2.
- E.g., if both prisoners deny, they will both get one month in prison, which is represented by a payoff of -1 .
- E.g., if prisoner 1 denies and prisoner 2 confesses, prisoner 1 will get 0 month in prison (and thus a payoff 0) and prisoner 2 will get 9 months in prison (and thus a payoff -9).

Prisoners' dilemma: solution

	Denial	Confession
Denial	$-1,-1$	$-9,0$
Confession	$0,-9$	$-6,-6$

- Prisoner 1 thinks:
- "If he denies, I should confess."
- "If he confesses, I should still confess."
- "I see! I should confess anyway!"
- For prisoner 2, the situation is the same and he will also confess.
- The solution of this game, i.e., the outcome, is that both prisoner will confess.
- This is people's prediction of this game.
- This outcome can be "improved" if they can cooperate.

Prisoners' dilemma: discussions

- A game like the prisoners' dilemma in which all players choose their actions simultaneously is called a static game.
- This question (with a different story) was first formally raised by Professor Tucker (one of the names in the KKT condition) in a seminar.
- In this game, confession is said to be a dominant strategy.
- It illustrates that lack of coordination can result in a lose-lose outcome.
- This situation is termed as socially inefficient.
- Interestingly, even if they promised each other to deny once they are caught, this promise is non-credible. Both of them will still confess to maximize their payoffs.

Prisoners' dilemma: Advertising game

- Two companies are competing in a market.
- At this moment, they both earn four million dollars per year.
- Each of them may choose to advertise with a cost of three million per year:
- If one advertises while the other does not, she earns nine millions and the competitor earns one million.
- If both advertise, both will earn six millions.

	Advertise	Be silent
Advertise	3,3	6,1
Be silent	1,6	4,4

- What will they do?

Prisoners' dilemma: Arms race

- Two countries are neighbors.
- Each of them may choose to develop a new weapon:
- If one does so while the other one keep the current status, the former's payoff is 20 and the latter's payoff is -100 .
- If both do this, however, their payoffs are both -10 .

	NW	CS
NW	$-10,-10$	$20,-100$
CS	$-100,20$	0,0

- What will they do?

Predicting the outcome of other games

- How about games that are not the prisoners' dilemma? Do we have a systematic way to predict the outcome?
- What will be the outcome (a combination of actions chosen by the two players) of the following game?

	Left	Middle	Right
Up	1,0	1,2	0,1
Down	0,3	0,1	2,0

Eliminating strictly dominated options

- We may apply the same trick we used to solve the prisoners' dilemma.
- For player 2, playing Middle dominates playing Right. So we may eliminate the column of Right without eliminating any possible outcome:

	Left	Middle	Right
Up	1,0	1,2	0,1
Down	0,3	0,1	2,0

$\rightarrow \quad$| | Left | Middle |
| :---: | :---: | :---: |
| Up | 1,0 | 1,2 |
| Down | 0,3 | 0,1 |

Eliminating strictly dominated options

- Now, player 1 knows that player 2 will never play Right.
- Facing the reduced game, player 1 finds that playing Down is dominated by playing Up.
- The row of Down can thus be eliminated:

	Left	Middle
Up	1,0	1,2
Down	0,3	0,1

$\rightarrow \quad$| | Left | Middle |
| :---: | :---: | :---: |
| Up | 1,0 | 1,2 |

- Knowing that player 1 will only choose Up, player 2 will simply choose Middle.
- The outcome of this game will be that player 1 chooses Up and player 2 chooses Middle.

Eliminating strictly dominated options

- In game theory, options are typically called strategies.
- The above idea is called iterative elimination of strictly dominated strategies.
- It solves some games. However, is also fails to solve some others.
- Consider the following game "Matching pennies":

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

- What may we do when no more strategies can be eliminated?
- In 1950, John Nash formalized the concept of equilibrium solutions, which are called Nash equilibria nowadays. ${ }^{1}$

[^0]
Road map

- Introduction.
- Nash equilibrium.
- Mixed strategies.
- Zero-sum games.
- Zero-sum games and duality.

Nash equilibrium: definition

- The most fundamental equilibrium concept, Nash equilibrium, is defined as follows:

Definition 1

For an n-player game, let S_{i} be player i 's action space and u_{i} be player i 's utility function, $i=1, \ldots, n$. An action profile $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$, $s_{i}^{*} \in S_{i}$, is a Nash equilibrium if

$$
\begin{array}{r}
u_{i}\left(s_{1}^{*}, \ldots, s_{i-1}^{*}, s_{i}^{*}, s_{i+1}^{*}, \ldots, s_{n}^{*}\right) \\
\geq u_{i}\left(s_{1}^{*}, \ldots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \ldots, s_{n}^{*}\right)
\end{array}
$$

for all $s_{i} \in S_{i}, i=1, \ldots, n$.

- In other words, s_{i}^{*} solves

$$
\max _{s_{i} \in S_{i}} u_{i}\left(s_{1}^{*}, \ldots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \ldots, s_{n}^{*}\right) .
$$

Nash equilibrium: an example

- Consider the following game in which no strategy/action is strictly dominated:

	L	C	R
T	0,4	4,0	5,3
M	4,0	0,4	5,3
B	3,5	3,5	6,6

- What is a Nash equilibrium?
- (T, L) is not: Player 1 will deviate to M or B .
- (T, C) is not: Player 2 will deviate to L or R .
- (B, R) is: No one will unilaterally deviate.
- Any other Nash equilibrium?

Nash equilibrium as a solution concept

	L	C	R
T	0,4	4,0	5,3
M	4,0	0,4	5,3
B	3,5	3,5	6,6

- In a static game, a Nash equilibrium is a reasonable outcome.
- Imagine that the players play this game repeatedly.
- If they happen to be in a Nash equilibrium, no one has the incentive to unilaterally deviate, i.e., to change her action while all others keep their actions.
- If they do not, at least one will deviate. This process will continue until a Nash equilibrium is reached.
- For example, if they starts at (T, L), eventually they will stop at (B, R), the unique Nash equilibrium of this game.

Nash equilibrium: More examples

- Is there any Nash equilibrium of the prisoners' dilemma?
- Is there any Nash equilibrium of the game "BoS"?
- Battle of sexes.
- Bach or Stravinsky.
- Is there any Nash equilibrium of the matching pennies game?

	Denial	Confession
Denial	$-1,-1$	$-9,0$
Confession	$0,-9$	$-6,-6$

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

Cournot Competition

- In 1838, Antoine Cournot introduced the following quantity competition between two retailers.
- Let q_{i} be the production quantity of firm $i, i=1,2$.
- Let $P(Q)=a-Q$ be the market-clearing price for an aggregate demand $Q=q_{1}+q_{2}$.
- Unit production cost of both firms is $c<a$.
- Our questions are:
- In this environment, what will these two firms do?
- Is the outcome satisfactory?
- What is the difference between duopoly and monopoly (or equivalently, decentralization or integration).

Cournot Competition

- Players: 1 and 2.
- Action spaces: $S_{i}=[0, \infty)$ for $i=1,2$.
- Utility functions:

$$
u_{i}\left(q_{1}, q_{2}\right)=q_{i}\left[a-\left(q_{i}+q_{3-i}\right)-c\right], i=1,2 .
$$

- As for an outcome, we look for a Nash equilibrium.
- If $\left(q_{1}^{*}, q_{2}^{*}\right)$ is a Nash equilibrium, it must satisfy

$$
\begin{aligned}
& q_{1}^{*}=\underset{q_{1} \in[0, \infty)}{\operatorname{argmax}} u_{1}\left(q_{1}, q_{2}^{*}\right)=\underset{q_{1} \in[0, \infty)}{\operatorname{argmax}} q_{1}\left[a-\left(q_{1}+q_{2}^{*}\right)-c\right] \text { and } \\
& q_{2}^{*}=\underset{q_{2} \in[0, \infty)}{\operatorname{argmax}} u_{2}\left(q_{1}^{*}, q_{2}\right)=\underset{q_{2} \in[0, \infty)}{\operatorname{argmax}} q_{2}\left[a-\left(q_{1}^{*}+q_{2}\right)-c\right]
\end{aligned}
$$

Solving the Cournot competition

- For firm 1's problem, we first see that it is a convex program:
- $u_{1}^{\prime}\left(q_{1}, q_{2}^{*}\right)=a-q_{1}-q_{2}^{*}-c-q_{1}$.
- $u_{2}^{\prime \prime}\left(q_{1}, q_{2}^{*}\right)=-2<0$.
- The FOC condition suggests $q_{1}^{*}=\frac{1}{2}\left(a-q_{2}^{*}-c\right)$. As long as $q_{2}^{*}<a-c$, q_{1}^{*} is optimal for firm 1.
- Similarly, $q_{2}^{*}=\frac{1}{2}\left(a-q_{1}^{*}-c\right)$ is firm 2's optimal decision as long as $q_{1}^{*}<a-c$.
- So if $\left(q_{1}^{*}, q_{2}^{*}\right)$ is a Nash equilibrium, it must satisfy

$$
q_{1}^{*}=\frac{1}{2}\left(a-q_{2}^{*}-c\right) \quad \text { and } \quad q_{2}^{*}=\frac{1}{2}\left(a-q_{1}^{*}-c\right) .
$$

- The unique solution to this system is $q_{1}^{*}=q_{2}^{*}=\frac{a-c}{3}$.
- Does this solution make sense?
- This is indeed the unique Nash equilibrium as $\frac{a-c}{3}<a-c$.

Best responses

- Another way of solving this game is to use the best response functions.
- Given the other player's any decision, what is my optimal decision?
- Firm 1's best response to firm 2 is $R_{1}\left(q_{2}\right)=\frac{1}{2}\left(a-q_{2}-c\right)$.
- Similarly, firm 2's best response is $R_{2}\left(q_{1}\right)=\frac{1}{2}\left(a-q_{1}-c\right)$.
- A Nash equilibrium always lies on an intersection of the two best response functions.

Distortion due to decentralization

- Suppose the two firms' are integrated together to jointly choose the aggregate production quantity.
- They together solve

$$
\max _{Q \in[0, \infty)} Q[a-Q-c],
$$

whose optimal solution is $Q^{*}=\frac{a-c}{2}$.

- Note that $Q^{*}=\frac{a-c}{2}<\frac{2(a-c)}{3}=q_{1}^{*}+q_{2}^{*}$.
- Why does a firm intend to increase its production quantity under decentralization?

Inefficiency due to decentralization

- May these firms improve their profitability with integration?
- Under decentralization, firm i earns

$$
\pi_{i}^{D}=\frac{(a-c)}{3}\left[a-\frac{2(a-c)}{3}-c\right]=\left(\frac{a-c}{3}\right)\left(\frac{a-c}{3}\right)=\frac{(a-c)^{2}}{9}
$$

- Under integration, the two firms earn

$$
\pi^{C}=\frac{(a-c)}{2}\left[a-\frac{a-c}{2}-c\right]=\left(\frac{a-c}{2}\right)\left(\frac{a-c}{2}\right)=\frac{(a-c)^{2}}{4} .
$$

- $\pi^{C}>\pi_{1}^{D}+\pi_{2}^{D}$: The integrated system is more efficient.
- Through appropriate profit splitting, both firm earns more.
- Integration is a win-win solution!

Inefficiency due to decentralization

- How about consumers?
- Under decentralization, the aggregate quantity is $\frac{2(a-c)}{3}$ and the market-clearing price is $\frac{a-c}{3}$.
- Under integration, the aggregate quantity is $\frac{a-c}{2}$ and the market-clearing price is $\frac{a-c}{2}$.
- Under decentralization, more consumers buy this product with a lower price.
- Consumers benefits from competition.
- Integration benefits the firms but hurts consumers.

The two firms' prisoners' dilemma

- Now we know it is the two firms' best interests to together produce $Q=\frac{a-c}{2}$.
- What if we suggest each of them to choose $q_{1}^{\prime}=q_{2}^{\prime}=\frac{a-c}{4}$?
- This results in $Q=\frac{a-c}{2}$, which maximizes the total profit.
- However, this is not a Nash equilibrium:
- "If the other firm chooses $q^{\prime}=\frac{a-c}{4}$, I will move to

$$
q^{\prime \prime}=R\left(q^{\prime}\right)=\frac{1}{2}\left(a-q^{\prime}-c\right)=\frac{3(a-c)}{8} .
$$

- So both firms will have incentives to unilaterally deviate.
- These two firms are engaged in a prisoners' dilemma!

Bertrand competition

- In 1883, Joseph Bertrand considered another format of retailer competition: They choose prices instead of quantities.
- Firm i chooses price $p_{i}, i=1,2$.
- Firm i 's demand quantity is

$$
q_{i}=a-p_{i}+b p_{3-i}, i=1,2 .
$$

- $b \in[0,1)$ measures the intensity of competition is: The larger b, the more intense the competition.
- Why $b<1$?
- Unit production cost $c<a$.

Solving the Bertrand competition

- Suppose $\left(p_{1}^{*}, p_{2}^{*}\right)$ is a Nash equilibrium.
- For firm $1, p_{1}^{*}$ must be an optimal solution of

$$
\max _{p_{1} \in[0, \infty)} \pi_{1}\left(p_{1}, p_{2}^{*}\right)=\left(a-p_{1}+b p_{2}^{*}\right)\left(p_{1}-c\right)
$$

It can be verified that $p_{1}^{*}=\frac{1}{2}\left(a+b p_{2}^{*}+c\right)$.

- Similarly, $p_{2}^{*}=\frac{1}{2}\left(a+b p_{1}^{*}+c\right)$.
- The unique Nash equilibrium is $p_{1}^{*}=p_{2}^{*}=\frac{a+c}{2-b}$.
- Does this solution make sense?

Distortion due to decentralization

- Under integration, the two firms together choose a single price P to solve

$$
\max _{P \in[0, \infty)} 2(a-P+b P)(P-c)
$$

whose optimal solution P^{*} satisfies the FOC

$$
\begin{aligned}
& (-1+b)\left(P^{*}-c\right)+a-P^{*}+b P^{*}=0 \\
\Leftrightarrow & (-1+b) P^{*}+a+c(1-b)=0 \\
\Leftrightarrow & P^{*}=\frac{a+c(1-b)}{2(1-b)} .
\end{aligned}
$$

- Is $P^{*}>p_{1}^{*}=p_{2}^{*}$?

$$
P^{*}>p_{1}^{*} \Leftrightarrow \frac{a+c(1-b)}{2(1-b)}>\frac{a+c}{2-b} \Leftrightarrow a>c(1-b) .
$$

Is $a>c(1-b)$ always true?

Road map

- Introduction.
- Nash equilibrium.
- Mixed strategies.
- Zero-sum games.
- Zero-sum games and duality.

Mixed strategy

- Choosing a single action deterministically is said to implement a pure strategy.
- A mixed strategy for player i is a probability distribution over the strategy space S_{i}.
- She randomizes her choice of actions with the distribution.
- E.g., in the matching penny game, player 1's mixed strategy is a probability distribution $(q, 1-q)$, where $\operatorname{Pr}($ Head $)=q$ and $\operatorname{Pr}($ Tail $)=1-q$.
- Formally, if all the strategy spaces are finite and of size K_{i} :

Definition 2

A mixed strategy for player i is a vector $p_{i}=\left(p_{i 1}, \ldots, p_{i K_{i}}\right)$, where $0 \leq p_{i j} \leq 1$ for all $j=1, \ldots, K_{i}$ and $\sum_{j=1}^{K_{i}} p_{i j}=1$.

Mixed-strategy Nash equilibrium

- A profile is a mixed-strategy Nash equilibrium if no player can unilaterally deviate (modify her own mixed strategy) and obtain a strictly higher expected utility.
- Let's use the matching penny game as an example.

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

- Let $(q, 1-q)$ be player 1's mixed strategy.
- Let $(r, 1-r)$ be player 2's mixed strategy.

Mixed-strategy Nash equilibrium

- Under their strategies, player 1 will earn:
- $u_{1}(H, H)=1$ with probability $q r$.
- $u_{1}(H, T)=-1$ with probability $q(1-r)$.
- $u_{1}(T, H)=-1$ with probability $(1-q) r$.
- $u_{1}(T, T)=1$ with probability $(1-q)(1-r)$.
- Player 1's expected utility is

$$
\begin{aligned}
& v_{1}(q, r)=\mathbb{E}\left[u_{1}(q, r)\right] \\
= & q r u_{1}(H, H)+q(1-r) u_{1}(H, T) \\
& +(1-q) r u_{1}(T, H)+(1-q)(1-r) u_{1}(T, T) \\
= & q r+(1-q)(1-r)-q(1-r)-(1-q) r \\
= & 4 q r-2 q-2 r+1=2 q(2 r-1)-2 r+1 .
\end{aligned}
$$

- Similarly, player 2's expected utility is

$$
v_{2}(q, r)=-4 q r+2 q+2 r-1=2 r(-2 q+1)+2 q-1 .
$$

Mixed-strategy Nash equilibrium

- For player 1 , let $q^{*}=R_{1}(r)$ be the best response that maximizes

$$
v_{1}(q, r)=2 q(2 r-1)-2 r+1
$$

- If $r<\frac{1}{2}, R_{1}(r)=0$.
- If $r>\frac{1}{2}, R_{1}(r)=1$.
- If $r=\frac{1}{2}, R_{1}(r)=[0,1]$ (q does not matter).

Mixed-strategy Nash equilibrium

- For player 2, the best response that maximizes

$$
v_{2}(q, r)=-4 q r+2 q+2 r-1=2 r(-2 q+1)+2 q-1 .
$$

is $r^{*}=R_{2}(q)=1$ if $q<\frac{1}{2}, 0$ if $q>\frac{1}{2}$, and $[1,0]$ if $q=\frac{1}{2}$.

- The unique mixed-strategy Nash equilibrium is $\left(q^{*}, r^{*}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$.

BoS

- Consider the game BoS as another example.

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- There are two pure-strategy Nash equilibria. Which two?
- They are also mixed-strategy Nash equilibria.
- Is there other mixed-strategy Nash equilibrium?
- Mixed strategies:
- Let $(q, 1-q)$ be player 1's mixed strategy: $\operatorname{Pr}(B)=q=1-\operatorname{Pr}(S)$.
- Let $(r, 1-r)$ be player 2's mixed strategy: $\operatorname{Pr}(B)=r=1-\operatorname{Pr}(S)$.

BoS

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- Player 1's expected utility is $q(3 r-1)+1-r$.
- Player 2's expected utility is $r(3 q-2)+2(1-q)$.
- The best response functions are

$$
R_{1}(r)=\left\{\begin{array}{ll}
0 & \text { if } r<\frac{1}{3} \\
1 & \text { if } r>\frac{1}{3} \\
{[1,0]} & \text { if } r=\frac{1}{3}
\end{array} \text { and } R_{2}(q)=\left\{\begin{array}{ll}
0 & \text { if } r<\frac{2}{3} \\
1 & \text { if } r>\frac{2}{3} \\
{[1,0]} & \text { if } r=\frac{2}{3}
\end{array} .\right.\right.
$$

BoS

- The two best response curves have three intersections!

- So there are three mixed-strategy Nash equilibria:
- $\left(q^{*}, r^{*}\right)=(0,0),\left(\frac{2}{3}, \frac{1}{3}\right)$, and $(1,1)$.
- Two of them are pure-strategy Nash equilibria: $(0,0)$ means both choosing S and $(1,1)$ means both choosing B.

Mixed strategies over more actions

- Consider the game "Rock, paper, scissor":

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- When a player has three actions, a mixed strategy is described with two variables.
- E.g., player 1's mixed strategy is $\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$.
- When a player's action space is infinite (e.g., those players in the Cournot competition), a mixed strategy is a continuous probability distribution.

Existence of (mixed-strategy) Nash equilibrium

- In his work in 1950, John Nash proved the following theorem regarding the existence of Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action spaces are all finite, there exists at least one mixed-strategy Nash equilibrium.

- This is a sufficient condition. Is it necessary?

Road map

- Introduction.
- Nash equilibrium.
- Mixed strategies.
- Zero-sum games.
- Zero-sum games and duality.

Zero-sum games

- For some games, one's success is the other one's failure.
- When one earns $\$ 1$, the other one loses $\$ 1$.
- These games are called zero-sum games.
- The sum of all players' payoffs are always zero under any action profile is zero.
- What is the optimal strategy in a zero-sum game?
- One's optimal strategy is to destroy the other one.

Zero-sum games

- As an example, the following game is a zero-sum game:

	L	C	R
T	$4,-4$	$4,-4$	$10,-10$
M	$2,-2$	$3,-3$	$1,-1$
B	$6,-6$	$5,-5$	$7,-7$

- For a zero-sum game, we typically remove player 2's payoff:

	L	C	R
T	4	4	10
M	2	3	1
B	6	5	7

- Player 1 wants to maximize her payoff.
- Player 2 wants to minimize player 1's payoff.

Player 1's problem

- How to solve a zero-sum game?
- The idea of Nash equilibrium still applies. However, the unique structure of zero-sum games allows us to solve them differently.
- Player 1 thinks:
- If I choose T, he will choose L or C. I get 4.
- If I choose M, he will choose R. I get 1 .
- If I choose B, he will choose C. I get 5 .
- For each of player 1's actions, what he may get in equilibrium can only be the row minimum.

	L	C	R	Row min
T	4	4	10	4
M	2	3	1	1
B	6	5	7	5

Player 2's problem

- Player 2 thinks:
- If I choose L, she will choose B. She get 6 .
- If I choose C, she will choose B. She get 5 .
- If I choose R, she will choose T. She get 10 .
- For each of player 2's actions, what player 1 may get in equilibrium must be the column maximum.

	L	C	R	Row min
T	4	4	10	4
M	2	3	1	1
B	6	5	7	5
Column max	6	5	10	

- In equilibrium, player 1 maximizes the row minimum and player 2 minimizes the column maximum.
- The unique Nash equilibrium is (B, C).

Saddle points

- For a zero-sum game, a pure-strategy Nash equilibrium is called a saddle point.
- While there may not exist a pure-strategy Nash equilibrium for a general game, this also holds for a zero-sum game.
- Any example?
- Is there any condition for a pure-strategy Nash equilibrium to exist in a zero-sum game?

Existence of saddle points

	L	C	R	R. min
T	4	4	10	4
M	2	3	1	2
B	6	5	7	5
C. \max	6	5	10	

	H	T	R. min
H	1	-1	-1
T	-1	1	-1
C. \max	1	1	

- For the previous example with a pure-strategy Nash equilibrium,

$$
\max \{\text { row minima }\}=5=\min \{\text { column maxima }\} .
$$

- For the zero-sum game matching penny with no pure-strategy Nash equilibrium,

$$
\max \{\text { row minima }\}=1 \neq-1=\min \{\text { column maxima }\} .
$$

Existence of saddle points

- Is there any relationship between the existence of saddle points and the values of max\{row minima\} and $\min \{$ column maxima\}?

Proposition 2

For a two-player zero-sum game, if

$$
\max \{\text { row minima }\}=\min \{\text { column maxima }\},
$$

an intersection of $a \max \{$ row minima $\}$ and $a \min \{$ column maxima $\}$ a saddle point.

- To prove this, we rely on linear programming. In particular, we will apply LP duality.

Road map

- Introduction.
- Nash equilibrium.
- Mixed strategies.
- Zero-sum games.
- Zero-sum games and duality.

Mixed strategies for zero-sum games

- For a zero-sum game:
- A pure-strategy Nash equilibrium (i.e., saddle point) may not exist.
- A mixed-strategy Nash equilibrium must exist.
- How do players choose their mixed strategies?
- Recall that when a saddle point exists:
- Player 1 chooses a row to maximize row minimum.
- Player 2 chooses a column to minimize the column maximum.
- In general:
- Player 1 chooses a row to maximize the expectation of row payoffs under player 2's mixed strategy.
- Player 2 chooses a column to minimize the expectation of column payoffs under player 1's mixed strategy.

Mixed strategies for zero-sum games

- Suppose player 1's mixed strategy is $x=\left(x_{1}, x_{2}, x_{3}\right)$:

	L	C	R	
T (with probability x_{1})	4	\mid	4	10
M (with probability x_{2})	2	\mid	3	1
B (with probability x_{3})	6	\mid	5	7
Expected column payoff	$4 x_{1}+2 x_{2}+6 x_{3}$	$4 x_{1}+3 x_{2}+5 x_{3}$	$10 x_{1}+x_{2}+7 x_{3}$	

- Player 2 will find the smallest expected column maximum.
- Therefore, Player 1 should solve

$$
\begin{aligned}
\max & \min \left\{4 x_{1}+2 x_{2}+6 x_{3}, 4 x_{1}+3 x_{2}+5 x_{3}, 10 x_{1}+x_{2}+7 x_{3}\right\} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=1 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 3
\end{aligned}
$$

Linearization of player 1's problem

$$
\begin{aligned}
\max & \min \left\{4 x_{1}+2 x_{2}+6 x_{3}, 4 x_{1}+3 x_{2}+5 x_{3}, 10 x_{1}+x_{2}+7 x_{3}\right\} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=1 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 3 .
\end{aligned}
$$

- Player 1's problem is nonlinear.
- However, it is equivalent to the following linear program:

$$
\begin{aligned}
\max & v \\
\text { s.t. } & v \leq 4 x_{1}+2 x_{2}+6 x_{3} \\
& v \leq 4 x_{1}+3 x_{2}+5 x_{3} \\
& v \leq 10 x_{1}+x_{2}+7 x_{3} \\
& x_{1}+x_{2}+x_{3}=1 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 3
\end{aligned}
$$

Player 2's problem

- Suppose player 2's mixed strategy is $y=\left(y_{1}, y_{2}, y_{3}\right)$.
- Following the same logic, player 2 solves the linear program

$$
\begin{array}{cl}
\min & u \\
\text { s.t. } & u \geq 4 y_{1}+4 y_{2}+10 y_{3} \\
& u \geq 2 y_{1}+3 y_{2}+y_{3} \\
& u \geq 6 y_{1}+5 y_{2}+7 y_{3} \\
& y_{1}+y_{2}+y_{3}=1 \\
& y_{i} \geq 0 \quad \forall i=1, \ldots, 3 .
\end{array}
$$

Duality between the two players

- The two players' problems can be rewritten to

$$
\begin{aligned}
& z^{*}=\max
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, v \text { urs. } \\
& \begin{array}{rrllllll}
w^{*}=\min & & & & u \\
\text { s.t. } & -4 y_{1} & -4 y_{2} & - & 10 y_{3} & +u & \geq & 0 \\
& -2 y_{1} & -3 y_{2} & - & y_{3} & + & \geq & 0 \\
& -6 y_{1} & -5 y_{2} & - & 7 y_{3} & +u & \geq & 0 \\
& y_{1} & +y_{2}+ & y_{3} & = & 1 \\
& y_{1} \geq 0, y_{2} \geq 0, y_{3} \geq 0, u \text { urs. } &
\end{array}
\end{aligned}
$$

- This is a primal-dual pair!

Duality between the two players

- For a two-player zero-sum game, if an LP finds player 1's optimal strategy, its dual finds player 2's optimal strategy.
- A pair of primal and dual optimal solutions x^{*} and y^{*} form a mixed-strategy Nash equilibrium.
- Some examples in business:
- Two competing retailers sharing a fixed amount of consumers.
- A retailer and a manufacturer negotiating the price of a product.
- Can any of these two LPs be infeasible or unbounded?
- No! Because a mixed-strategy Nash equilibrium always exists.
- So these two LPs must both have optimal solutions.

Existence of saddle points

- Now we are ready to prove the theorem regarding the existence of saddle points:

For a two-player zero-sum game, if

$$
\max \{\text { row minima }\}=\min \{\text { column maxima }\},
$$

an intersection of $a \max \{$ row minima\} and a $\min \{$ column maxima\} is a saddle point.

Existence of saddle points

- First of all, note that choosing a single row or column corresponds to a feasible primal or dual solution:
- Choosing a single row is for player 1 to implement a pure strategy (by setting the corresponding $x_{i}=1$ and $x_{k}=0$ for all $\left.k \neq i\right)$.
- This is a feasible solution to the primal LP.
- Similarly, choosing a single column corresponds to a feasible solution to the dual LP with $y_{j}=1$ and $y_{k}=0$ for all $k \neq j$.
- Suppose $\max \{$ row minima $\}=\min \{$ column maxima\} is satisfied:
- Suppose this occurs at row i and column j.
- Let x^{*} be the primal solution with $x_{i}^{*}=1$ and $x_{k}^{*}=0$ for all $k \neq i$.
- Let y^{*} be the dual solution with $y_{j}^{*}=1$ and $y_{k}^{*}=0$ for all $k \neq j$.
- As the condition is satisfied, $z^{*}=w^{*}$ for two feasible solutions. By strong duality, these two feasible solutions are both optimal.
- A pair of primal-dual optimal solutions form a mixed-strategy Nash equilibrium. As $x_{i}^{*}=y_{j}^{*}=1, x^{*}$ and y^{*} form a saddle point.

[^0]: ${ }^{1} \mathrm{He}$ did that as a Ph.D. students, when he was 22 years old.

