
Programming Design, Spring 2013

Lab Exam 1
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

In this exam, there are two problems. You need to write a C++ program for each problem. The
grading criteria for the two programs are the same:

• 70% of your grades for this program will be based on the correctness of your output. The online
grading system will input 35 sets of testing data and then check your outputs. You may only see
the grades of running your program on these data but cannot see the inputs and outputs. These
35 sets count for 70 points, i.e., 2 points for each set.

• 30% of your grades for this program will be based on how you write your program, including the
logic and format. Please try to write a robust, efficient, and easy-to-read program.

Please note that your program will be submitted to the online grading system. Therefore, your
programs must be able to accept multiple lines of input and stop when the input ends. In short, your
programs should be structured in the same way as in the homework.

Problem 1: weighted average

(50 points) Please write a C++ program that computes weighted averages.

The input contains several lines of numbers. In each line, 2n + 1 numbers n, x1, x2, ..., xn, w1, w2,
..., wn will be given. The first number, n, is the size of two vectors x and w. You may assume that
n ≤ 100. The first vector x contains values while the second vector w contains weights. Your program
should calculate the weighted average of x by using w as the corresponding weights. All the wis are
positive but the sum of wis may be greater than 1. Therefore, the effective weight that should be applied
on xi is wi

W , where W =
∑n

i=1 wi. With this in mind, your program should output a single number

n∑
i=1

(
wi

W

)
xi where W =

n∑
j=1

wj .

For the line of input, numbers are separated by white spaces. For the output, the weighted average
should be displays with two digits after the decimal point. Remaining digits should be truncated in any
cases. After this number, a new line character/object should be placed.

Below are some examples:

• Input: 2 10 20 0.5 0.5. Output: 15.00.

• Input: 2 10 20 2 8. Output: 18.00.

• Input: 3 5.5555 20.8 40.2 3.4 7.2 9.65. Output: 27.48.

• Input: 6 1 2 3 4 5 6 7 8 9 10 11 12. Output: 3.80.

Problem 2: counting winning cells in a tic-tac-toe game

(50 points) Please write a C++ program that counts the number of winning cells in a tic-tac-toe game.

The input contains several lines. In each line of the input, you will first be given a positive integer
indicating the number of remaining integers in this line. Except the first integer, all the remaining

1



integers are positive nonrepeating integers between 1 and 9 (both included). Each of these numbers
corresponds to a cell in a tic-tac-toe game, with 1 for the left-top cell, 2 for the center-top cell, ..., and
9 for the right-bottom cell. If we exclude the first number, numbers in the odd positions represent the
cells occupied by player 1 (she) while those in the even positions are for player 2 (he).

However, not all the nine numbers will appear in a line. In a line, what you may be given is just a
partial game which temporarily ends after player 1 occupies a cell. In other words, the numbers given
in a line must be one, three, five, or seven. Your program should work for player 2 and tell him how
many unoccupied cells are the winning cells of player 1, i.e., once player 1 occupies one of them, she
will win. Your program should output a single number that represents the number of player 1’s winning
cells, followed by a newline object/character. This number may be zero for some partial games.

Below are some examples:

• Input: 5 1 2 3 4 5. Output: 2. The answer is 2 because both cell 7 and 9 are player 1’s winning
cells. Note that cell 2 is not because it has be occupied.

• Input: 5 5 3 1 4 6. Output: 1. Only cell 9 is player 1’s winning cell.

• Input: 7 5 3 1 4 6 9 7. Output: 0. No unoccupied cell is player 1’s winning cell.

Please note that the first number in an input line tells you how many cells have been occupied in the
partial game.

2


